RunPalantir | R Documentation |
Run Palantir analysis
RunPalantir(
srt = NULL,
assay_X = "RNA",
slot_X = "counts",
assay_layers = c("spliced", "unspliced"),
slot_layers = "counts",
adata = NULL,
group_by = NULL,
linear_reduction = NULL,
nonlinear_reduction = NULL,
basis = NULL,
n_pcs = 30,
n_neighbors = 30,
dm_n_components = 10,
dm_alpha = 0,
dm_n_eigs = NULL,
early_group = NULL,
early_cell = NULL,
terminal_cells = NULL,
terminal_groups = NULL,
num_waypoints = 1200,
scale_components = TRUE,
use_early_cell_as_start = TRUE,
adjust_early_cell = FALSE,
adjust_terminal_cells = FALSE,
max_iterations = 25,
n_jobs = 8,
point_size = 20,
palette = "Paired",
palcolor = NULL,
show_plot = TRUE,
save = FALSE,
dpi = 300,
dirpath = "./",
fileprefix = "",
return_seurat = !is.null(srt)
)
srt |
A Seurat object. |
assay_X |
Assay to convert as the main data matrix (X) in the anndata object. |
slot_X |
Slot name for assay_X in the Seurat object. |
assay_layers |
Assays to convert as layers in the anndata object. |
slot_layers |
Slot names for the assay_layers in the Seurat object. |
adata |
An anndata object. |
group_by |
Variable to use for grouping cells in the Seurat object. |
linear_reduction |
Linear reduction method to use, e.g., "PCA". |
nonlinear_reduction |
Non-linear reduction method to use, e.g., "UMAP". |
basis |
The basis to use for reduction, e.g., "UMAP". |
n_pcs |
Number of principal components to use for linear reduction. Default is 30. |
n_neighbors |
Number of neighbors to use for constructing the KNN graph. Default is 30. |
dm_n_components |
The number of diffusion components to calculate. |
dm_alpha |
Normalization parameter for the diffusion operator. |
dm_n_eigs |
Number of eigen vectors to use. |
early_group |
Name of the group to start Palantir analysis from. |
early_cell |
Name of the cell to start Palantir analysis from. |
terminal_cells |
Character vector specifying terminal cells for Palantir analysis. |
terminal_groups |
Character vector specifying terminal groups for Palantir analysis. |
num_waypoints |
Number of waypoints to be included. |
scale_components |
Should the cell fate probabilities be scaled for each component independently? |
use_early_cell_as_start |
Should the starting cell for each terminal group be set as early_cell? |
adjust_early_cell |
Whether to adjust the early cell to the cell with the minimum pseudotime value. |
adjust_terminal_cells |
hether to adjust the terminal cells to the cells with the maximum pseudotime value for each terminal group. |
max_iterations |
Maximum number of iterations for pseudotime convergence. |
n_jobs |
The number of parallel jobs to run. |
point_size |
The point size for plotting. |
palette |
The palette to use for coloring cells. |
palcolor |
A vector of colors to use as the palette. |
show_plot |
Whether to show the PAGA plot. |
save |
Whether to save the PAGA plots. |
dpi |
The DPI (dots per inch) for saving the PAGA plot. |
dirpath |
The directory to save the PAGA plots. |
fileprefix |
The file prefix to use for the PAGA plots. |
return_seurat |
Whether to return a Seurat object instead of an anndata object. Default is TRUE. |
srt_to_adata
data("pancreas_sub")
pancreas_sub <- RunPalantir(
srt = pancreas_sub, group_by = "SubCellType", linear_reduction = "PCA", nonlinear_reduction = "UMAP",
early_group = "Ductal", use_early_cell_as_start = TRUE,
terminal_groups = c("Alpha", "Beta", "Delta", "Epsilon")
)
head(pancreas_sub[[]])
FeatureDimPlot(pancreas_sub, c("palantir_pseudotime", "palantir_diff_potential"))
FeatureDimPlot(pancreas_sub, paste0(c("Alpha", "Beta", "Delta", "Epsilon"), "_diff_potential"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.