RunPalantir: Run Palantir analysis

View source: R/SCP-analysis.R

RunPalantirR Documentation

Run Palantir analysis

Description

Run Palantir analysis

Usage

RunPalantir(
  srt = NULL,
  assay_X = "RNA",
  slot_X = "counts",
  assay_layers = c("spliced", "unspliced"),
  slot_layers = "counts",
  adata = NULL,
  group_by = NULL,
  linear_reduction = NULL,
  nonlinear_reduction = NULL,
  basis = NULL,
  n_pcs = 30,
  n_neighbors = 30,
  dm_n_components = 10,
  dm_alpha = 0,
  dm_n_eigs = NULL,
  early_group = NULL,
  early_cell = NULL,
  terminal_cells = NULL,
  terminal_groups = NULL,
  num_waypoints = 1200,
  scale_components = TRUE,
  use_early_cell_as_start = TRUE,
  adjust_early_cell = FALSE,
  adjust_terminal_cells = FALSE,
  max_iterations = 25,
  n_jobs = 8,
  point_size = 20,
  palette = "Paired",
  palcolor = NULL,
  show_plot = TRUE,
  save = FALSE,
  dpi = 300,
  dirpath = "./",
  fileprefix = "",
  return_seurat = !is.null(srt)
)

Arguments

srt

A Seurat object.

assay_X

Assay to convert as the main data matrix (X) in the anndata object.

slot_X

Slot name for assay_X in the Seurat object.

assay_layers

Assays to convert as layers in the anndata object.

slot_layers

Slot names for the assay_layers in the Seurat object.

adata

An anndata object.

group_by

Variable to use for grouping cells in the Seurat object.

linear_reduction

Linear reduction method to use, e.g., "PCA".

nonlinear_reduction

Non-linear reduction method to use, e.g., "UMAP".

basis

The basis to use for reduction, e.g., "UMAP".

n_pcs

Number of principal components to use for linear reduction. Default is 30.

n_neighbors

Number of neighbors to use for constructing the KNN graph. Default is 30.

dm_n_components

The number of diffusion components to calculate.

dm_alpha

Normalization parameter for the diffusion operator.

dm_n_eigs

Number of eigen vectors to use.

early_group

Name of the group to start Palantir analysis from.

early_cell

Name of the cell to start Palantir analysis from.

terminal_cells

Character vector specifying terminal cells for Palantir analysis.

terminal_groups

Character vector specifying terminal groups for Palantir analysis.

num_waypoints

Number of waypoints to be included.

scale_components

Should the cell fate probabilities be scaled for each component independently?

use_early_cell_as_start

Should the starting cell for each terminal group be set as early_cell?

adjust_early_cell

Whether to adjust the early cell to the cell with the minimum pseudotime value.

adjust_terminal_cells

hether to adjust the terminal cells to the cells with the maximum pseudotime value for each terminal group.

max_iterations

Maximum number of iterations for pseudotime convergence.

n_jobs

The number of parallel jobs to run.

point_size

The point size for plotting.

palette

The palette to use for coloring cells.

palcolor

A vector of colors to use as the palette.

show_plot

Whether to show the PAGA plot.

save

Whether to save the PAGA plots.

dpi

The DPI (dots per inch) for saving the PAGA plot.

dirpath

The directory to save the PAGA plots.

fileprefix

The file prefix to use for the PAGA plots.

return_seurat

Whether to return a Seurat object instead of an anndata object. Default is TRUE.

See Also

srt_to_adata

Examples

data("pancreas_sub")
pancreas_sub <- RunPalantir(
  srt = pancreas_sub, group_by = "SubCellType", linear_reduction = "PCA", nonlinear_reduction = "UMAP",
  early_group = "Ductal", use_early_cell_as_start = TRUE,
  terminal_groups = c("Alpha", "Beta", "Delta", "Epsilon")
)
head(pancreas_sub[[]])
FeatureDimPlot(pancreas_sub, c("palantir_pseudotime", "palantir_diff_potential"))
FeatureDimPlot(pancreas_sub, paste0(c("Alpha", "Beta", "Delta", "Epsilon"), "_diff_potential"))


zh542370159/SCP documentation built on Nov. 22, 2023, 2:34 a.m.