Description Usage Arguments Details Value Author(s) See Also Examples
Visualize Density Distribution by Heatmap
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  | densityHeatmap(data,
    density_param = list(na.rm = TRUE),
    
    col = rev(brewer.pal(11, "Spectral")),
    color_space = "LAB",
    ylab = deparse(substitute(data)),
    column_title = paste0("Density heatmap of ", deparse(substitute(data))),
    title = column_title,
    ylim = c(-Inf, Inf),
    range = ylim,
    
    title_gp = gpar(fontsize = 14),
    ylab_gp = gpar(fontsize = 12),
    tick_label_gp = gpar(fontsize = 10),
    quantile_gp = gpar(fontsize = 10),
    
    column_order = NULL,
    column_names_side = "bottom",
    show_column_names = TRUE,
    column_names_max_height = unit(6, "cm"),
    column_names_gp = gpar(fontsize = 12),
    column_names_rot = 90,
    
    cluster_columns = FALSE,
    clustering_distance_columns = "ks",
    clustering_method_columns = "complete",
    mc.cores = 1,
    
    ...)
 | 
data | 
 A matrix or a list. If it is a matrix, density is calculated by columns.  | 
density_param | 
 Parameters send to   | 
col | 
 A vector of colors that density values are mapped to.  | 
color_space | 
 The color space in which colors are interpolated. Pass to   | 
ylab | 
 Label on y-axis.  | 
column_title | 
 Title of the heatmap.  | 
title | 
 Same as   | 
ylim | 
 Ranges on the y-axis.  | 
range | 
 Same as   | 
title_gp | 
 Graphic parameters for title.  | 
ylab_gp | 
 Graphic parameters for y-labels.  | 
tick_label_gp | 
 Graphic parameters for y-ticks.  | 
quantile_gp | 
 Graphic parameters for the quantiles.  | 
column_order | 
 Order of columns.  | 
column_names_side | 
 Pass to   | 
show_column_names | 
 Pass to   | 
column_names_max_height | 
 Pass to   | 
column_names_gp | 
 Pass to   | 
column_names_rot | 
 Pass to   | 
cluster_columns | 
 Whether cluster columns?  | 
clustering_distance_columns | 
 There is a specific distance method   | 
clustering_method_columns | 
 Pass to   | 
mc.cores | 
 Multiple cores for calculating ks distance.  | 
... | 
 Pass to   | 
To visualize data distribution in a matrix or in a list, we normally use
boxplot or violinplot. We can also use colors to map the density values and
visualize distribution of values through a heatmap. It is useful if you have
huge number of columns in data to visualize.
The density matrix is generated with 500 rows ranging between the maximun and minimal values in all densities.
A Heatmap-class object. It can oly add other heatmaps/annotations vertically.
Zuguang Gu <z.gu@dkfz.de>
https://jokergoo.github.io/ComplexHeatmap-reference/book/other-high-level-plots.html#density-heatmap
1 2 3 4 5 6 7 8 9 10  | matrix = matrix(rnorm(100), 10); colnames(matrix) = letters[1:10]
densityHeatmap(matrix)
lt = list(rnorm(10), rnorm(10))
densityHeatmap(lt)
ha = HeatmapAnnotation(points = anno_points(runif(10)),
    anno = rep(c("A", "B"), each = 5), col = list(anno = c("A" = "red", "B" = "blue")))
densityHeatmap(matrix, top_annotation = ha)
densityHeatmap(matrix, top_annotation = ha) %v% Heatmap(matrix, height = unit(6, "cm"))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.