has_role | R Documentation |
has_role()
, all_predictors()
, and all_outcomes()
can be used to
select variables in a formula that have certain roles.
In most cases, the right approach for users will be use to use the
predictor-specific selectors such as all_numeric_predictors()
and
all_nominal_predictors()
. In general you should be careful about using
-all_outcomes()
if a *_predictors()
selector would do what you want.
Similarly, has_type()
, all_numeric()
, all_integer()
, all_double()
,
all_nominal()
, all_ordered()
, all_unordered()
, all_factor()
,
all_string()
, all_date()
and all_datetime()
are used to select columns
based on their data type.
all_factor()
captures ordered and unordered factors, all_string()
captures characters, all_unordered()
captures unordered factors and
characters, all_ordered()
captures ordered factors, all_nominal()
captures characters, unordered and ordered factors.
all_integer()
captures integers, all_double()
captures doubles,
all_numeric()
captures all kinds of numeric.
all_date()
captures Date()
variables, all_datetime()
captures
POSIXct()
variables.
See selections for more details.
current_info()
is an internal function.
All of these functions have have limited utility outside of column selection in step functions.
has_role(match = "predictor")
has_type(match = "numeric")
all_outcomes()
all_predictors()
all_date()
all_date_predictors()
all_datetime()
all_datetime_predictors()
all_double()
all_double_predictors()
all_factor()
all_factor_predictors()
all_integer()
all_integer_predictors()
all_logical()
all_logical_predictors()
all_nominal()
all_nominal_predictors()
all_numeric()
all_numeric_predictors()
all_ordered()
all_ordered_predictors()
all_string()
all_string_predictors()
all_unordered()
all_unordered_predictors()
current_info()
match |
A single character string for the query. Exact matching is used (i.e. regular expressions won't work). |
Selector functions return an integer vector.
current_info()
returns an environment with objects vars
and data
.
data(biomass, package = "modeldata")
rec <- recipe(biomass) %>%
update_role(
carbon, hydrogen, oxygen, nitrogen, sulfur,
new_role = "predictor"
) %>%
update_role(HHV, new_role = "outcome") %>%
update_role(sample, new_role = "id variable") %>%
update_role(dataset, new_role = "splitting indicator")
recipe_info <- summary(rec)
recipe_info
# Centering on all predictors except carbon
rec %>%
step_center(all_predictors(), -carbon) %>%
prep(training = biomass) %>%
bake(new_data = NULL)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.