step_pca | R Documentation |
step_pca()
creates a specification of a recipe step that will convert
numeric variables into one or more principal components.
step_pca(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
threshold = NA,
options = list(),
res = NULL,
columns = NULL,
prefix = "PC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("pca")
)
recipe |
A recipe object. The step will be added to the sequence of operations for this recipe. |
... |
One or more selector functions to choose variables
for this step. See |
role |
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model. |
trained |
A logical to indicate if the quantities for preprocessing have been estimated. |
num_comp |
The number of components to retain as new predictors.
If |
threshold |
A fraction of the total variance that should be covered by
the components. For example, |
options |
A list of options to the default method for
|
res |
The |
columns |
A character string of the selected variable names. This field
is a placeholder and will be populated once |
prefix |
A character string for the prefix of the resulting new variables. See notes below. |
keep_original_cols |
A logical to keep the original variables in the
output. Defaults to |
skip |
A logical. Should the step be skipped when the
recipe is baked by |
id |
A character string that is unique to this step to identify it. |
Principal component analysis (PCA) is a transformation of a group of variables that produces a new set of artificial features or components. These components are designed to capture the maximum amount of information (i.e. variance) in the original variables. Also, the components are statistically independent from one another. This means that they can be used to combat large inter-variables correlations in a data set.
It is advisable to standardize the variables prior to running
PCA. Here, each variable will be centered and scaled prior to
the PCA calculation. This can be changed using the
options
argument or by using step_center()
and step_scale()
.
The argument num_comp
controls the number of components that will be retained
(the original variables that are used to derive the components are removed from
the data). The new components will have names that begin with prefix
and a
sequence of numbers. The variable names are padded with zeros. For example, if
num_comp < 10
, their names will be PC1
- PC9
. If num_comp = 101
,
the names would be PC1
- PC101
.
Alternatively, threshold
can be used to determine the
number of components that are required to capture a specified
fraction of the total variance in the variables.
An updated version of recipe
with the new step added to the
sequence of any existing operations.
When you tidy()
this step two things can happen depending
the type
argument. If type = "coef"
a tibble returned with 4 columns
terms
, value
, component
, and id
:
character, the selectors or variables selected
numeric, variable loading
character, principle component
character, id of this step
If type = "variance"
a tibble returned with 4 columns terms
, value
,
component
, and id
:
character, type of variance
numeric, value of the variance
integer, principle component
character, id of this step
This step has 2 tuning parameters:
num_comp
: # Components (type: integer, default: 5)
threshold
: Threshold (type: double, default: NA)
This step performs an unsupervised operation that can utilize case weights.
As a result, case weights are only used with frequency weights. For more
information, see the documentation in case_weights and the examples on
tidymodels.org
.
Jolliffe, I. T. (2010). Principal Component Analysis. Springer.
Other multivariate transformation steps:
step_classdist()
,
step_classdist_shrunken()
,
step_depth()
,
step_geodist()
,
step_ica()
,
step_isomap()
,
step_kpca()
,
step_kpca_poly()
,
step_kpca_rbf()
,
step_mutate_at()
,
step_nnmf()
,
step_nnmf_sparse()
,
step_pls()
,
step_ratio()
,
step_spatialsign()
rec <- recipe(~., data = USArrests)
pca_trans <- rec %>%
step_normalize(all_numeric()) %>%
step_pca(all_numeric(), num_comp = 3)
pca_estimates <- prep(pca_trans, training = USArrests)
pca_data <- bake(pca_estimates, USArrests)
rng <- extendrange(c(pca_data$PC1, pca_data$PC2))
plot(pca_data$PC1, pca_data$PC2,
xlim = rng, ylim = rng
)
with_thresh <- rec %>%
step_normalize(all_numeric()) %>%
step_pca(all_numeric(), threshold = .99)
with_thresh <- prep(with_thresh, training = USArrests)
bake(with_thresh, USArrests)
tidy(pca_trans, number = 2)
tidy(pca_estimates, number = 2)
tidy(pca_estimates, number = 2, type = "variance")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.