Description Usage Format Details Source References Examples
Michael Florent van Langren (1598-1675) was a Dutch mathematician and astronomer, who served as a royal mathematician to King Phillip IV of Spain, and who worked on one of the most significant problems of his time— the accurate determination of longitude, particularly for navigation at sea.
In order to convince the Spanish court of the seriousness of the problem (often resulting in great losses through ship wrecks), he prepared a 1-dimensional line graph, showing all the available estimates of the distance in longitude between Toledo and Rome, which showed large errors, for even this modest distance. This 1D line graph, from Langren (1644), is believed to be the first known graph of statistical data (Friendly etal., 2010). It provides a compelling example of the notions of statistical variability and bias.
The data frame Langren1644
gives the estimates and other information derived from the
previously known 1644 graph.
It turns out that van Langren produced other versions of this graph, as early as 1628.
The data frame Langren.all
gives the estimates derived
from all known versions of this graph.
1 2 3 |
Langren1644
: A data frame with 12 observations on the following 9 variables,
giving determinations of the distance in longitude between Toledo and Rome, from the 1644 graph.
Name
The name of the person giving a determination, a factor with levels A. Argelius
... T. Brahe
Longitude
Estimated value of the longitude distance between Toledo and Rome
Year
Year associated with this determination
Longname
A longer version of the Name
, where appropriate; a factor with levels Andrea Argoli
Christoph Clavius
Tycho Brahe
City
The principal city where this person worked; a factor with levels Alexandria
Amsterdam
Bamberg
Bologna
Frankfurt
Hven
Leuven
Middelburg
Nuremberg
Padua
Paris
Rome
Country
The country where this person worked; a factor with levels Belgium
Denmark
Egypt
Flanders
France
Germany
Italy
Italy
Latitude
Latitude of this City
; a numeric vector
Source
Likely source for this determination of Longitude; a factor with levels Astron
Map
Gap
A numeric vector indicating whether the Longitude
value is below or above the median
Langren.all
: A data frame with 61 observations on the following 4 variables,
giving determinations of Longitude between Toledo and Rome from all known versions of van Langren's graph.
Author
Author of the graph, a factor with levels Langren
Lelewel
Year
Year of publication
Name
The name of the person giving a determination, a factor
with levels Algunos1
Algunos2
Apianus
... Schonerus
Longitude
Estimated value of the longitude distance between Toledo and Rome
In all the graphs, Toledo is implicitly at the origin and Rome is located relatively at the value of Longitude
To judge correspondence with an actual map, the positions in (lat, long) are
toledo <- c(39.86, -4.03);
rome <- c(41.89, 12.5)
The longitude values were digitized from images of the various graphs, which may be found on the Supplementary materials page for Friendly etal. (2009).
Friendly, M., Valero-Mora, P. and Ulargui, J. I. (2010). The First (Known) Statistical Graph: Michael Florent van Langren and the "Secret" of Longitude. The American Statistician, 64 (2), 185-191. Supplementary materials: http://datavis.ca/gallery/langren/.
Langren, M. F. van. (1644). La Verdadera Longitud por Mar y Tierra. Antwerp: (n.p.), 1644. English translation available at http://www.math.yorku.ca/SCS/Gallery/langren/verdadera.pdf.
Lelewel, J. (1851). G?ographie du Moyen ?ge. Paris: Pilliet, 1851.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | data(Langren1644)
####################################################
# reproductions of Langren's graph overlaid on a map
####################################################
if (require(jpeg, quietly=TRUE)) {
gimage <- readJPEG(system.file("images", "google-toledo-rome3.jpg", package="HistData"))
# NB: dimensions from readJPEG are y, x, colors
gdim <- dim(gimage)[1:2]
ylim <- c(1,gdim[1])
xlim <- c(1,gdim[2])
op <- par(bty="n", xaxt="n", yaxt="n", mar=c(2, 1, 1, 1) + 0.1)
# NB: necessary to scale the plot to the pixel coordinates, and use asp=1
plot(xlim, ylim, xlim=xlim, ylim=ylim, type="n", ann=FALSE, asp=1 )
rasterImage(gimage, 1, 1, gdim[2], gdim[1])
# pixel coordinates of Toledo and Rome in the image, measured from the bottom left corner
toledo.map <- c(131, 59)
rome.map <- c(506, 119)
# confirm locations of Toledo and Rome
points(rbind(toledo.map, rome.map), cex=2)
text(131, 95, "Toledo", cex=1.5)
text(506, 104, "Roma", cex=1.5)
# set a scale for translation of lat,long to pixel x,y
scale <- data.frame(x=c(131, 856), y=c(52,52))
rownames(scale)=c(0,30)
# translate from degrees longitude to pixels
xlate <- function(x) {
131+x*726/30
}
# draw an axis
lines(scale)
ticks <- xlate(seq(0,30,5))
segments(ticks, 52, ticks, 45)
text(ticks, 40, seq(0,30,5))
text(xlate(8), 17, "Grados de la Longitud", cex=1.7)
# label the observations with the names
points(x=xlate(Langren1644$Longitude), y=rep(57, nrow(Langren1644)),
pch=25, col="blue", bg="blue")
text(x=xlate(Langren1644$Longitude), y=rep(57, nrow(Langren1644)),
labels=Langren1644$Name, srt=90, adj=c(-.1, .5), cex=0.8)
par(op)
}
### Original implementation using ReadImages, now deprecated & shortly to be removed
## Not run:
if (require(ReadImages)) {
gimage <- read.jpeg(system.file("images", "google-toledo-rome3.jpg", package="HistData"))
plot(gimage)
# pixel coordinates of Toledo and Rome in the image, measured from the bottom left corner
toledo.map <- c(130, 59)
rome.map <- c(505, 119)
# confirm locations of Toledo and Rome
points(rbind(toledo.map, rome.map), cex=2)
# set a scale for translation of lat,long to pixel x,y
scale <- data.frame(x=c(130, 856), y=c(52,52))
rownames(scale)=c(0,30)
lines(scale)
xlate <- function(x) {
130+x*726/30
}
points(x=xlate(Langren1644$Longitude), y=rep(57, nrow(Langren1644)),
pch=25, col="blue")
text(x=xlate(Langren1644$Longitude), y=rep(57, nrow(Langren1644)),
labels=Langren1644$Name, srt=90, adj=c(0, 0.5), cex=0.8)
}
## End(Not run)
### First attempt using ggplot2; temporarily abandonned.
## Not run:
require(maps)
require(ggplot2)
require(reshape)
require(plyr)
require(scales)
# set latitude to that of Toledo
Langren1644$Latitude <- 39.68
# x/long y/lat
bbox <- c( 38.186, -9.184,
43.692, 28.674 )
bbox <- matrix(bbox, 2, 2, byrow=TRUE)
borders <- as.data.frame(map("world", plot = FALSE,
xlim = expand_range(bbox[,2], 0.2),
ylim = expand_range(bbox[,1], 0.2))[c("x", "y")])
data(world.cities)
# get actual locations of Toledo & Rome
cities <- subset(world.cities,
name %in% c("Rome", "Toledo") & country.etc %in% c("Spain", "Italy"))
colnames(cities)[4:5]<-c("Latitude", "Longitude")
mplot <- ggplot(Langren1644, aes(Longitude, Latitude) ) +
geom_path(aes(x, y), borders, colour = "grey60") +
geom_point(y = 40) +
geom_text(aes(label = Name), y = 40.1, angle = 90, hjust = 0, size = 3)
mplot <- mplot +
geom_segment(aes(x=-4.03, y=40, xend=30, yend=40))
mplot <- mplot +
geom_point(data = cities, colour = "red", size = 2) +
geom_text(data=cities, aes(label=name), color="red", size=3, vjust=-0.5) +
coord_cartesian(xlim=bbox[,2], ylim=bbox[,1])
# make the plot have approximately aspect ratio = 1
windows(width=10, height=2)
mplot
## End(Not run)
###########################################
# show variation in estimates across graphs
###########################################
library(lattice)
graph <- paste(Langren.all$Author, Langren.all$Year)
dotplot(Name ~ Longitude, data=Langren.all)
dotplot( as.factor(Year) ~ Longitude, data=Langren.all, groups=Name, type="o")
dotplot(Name ~ Longitude|graph, data=Langren.all, groups=graph)
# why the gap?
gap.mod <- glm(Gap ~ Year + Source + Latitude, family=binomial, data=Langren1644)
anova(gap.mod, test="Chisq")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.