Description Usage Arguments Details Value Note Author(s) See Also Examples
Create 2-dimensional empirical confidence regions from provided data.
1 2 3 4 5 6 7 8 9 10 11 12 13 | ci2d(x, y = NULL,
nbins=51, method=c("bkde2D","hist2d"),
bandwidth, factor=1.0,
ci.levels=c(0.50,0.75,0.90,0.95,0.975),
show=c("filled.contour","contour","image","none"),
col=topo.colors(length(breaks)-1),
show.points=FALSE,
pch=par("pch"),
points.col="red",
xlab, ylab,
...)
## S3 method for class 'ci2d'
print(x, ...)
|
x |
either a vector containing the x coordinates or a matrix with 2 columns. |
y |
a vector contianing the y coordinates, not required if ‘x’ is matrix |
nbins |
number of bins in each dimension. May be a scalar or a 2 element vector. Defaults to 51. |
method |
One of "bkde2D" (for KernSmooth::bdke2d) or "hist2d" (for gplots::hist2d) specifyting the name of the method to create the 2-d density summarizing the data. Defaults to "bkde2D". |
bandwidth |
Bandwidth to use for |
factor |
Numeric scaling factor for bandwidth. Useful for exploring effect of changing the bandwidth. Defaults to 1.0. |
ci.levels |
Confidence level(s) to use for plotting
data. Defaults to |
show |
Plot type to be displaed. One of "filled.contour", "contour", "image", or "none". Defaults to "filled.contour". |
show.points |
Boolean indicating whether original data values
should be plotted. Defaults to |
pch |
Point type for plots. See |
points.col |
Point color for plotting original data. Defaiults to "red". |
col |
Colors to use for plots. |
xlab, ylab |
Axis labels |
... |
Additional arguments passed to |
This function utilizes either KernSmooth::bkde2D
or
gplots::hist2d
to estmate a 2-dimensional density of the data
passed as an argument. This density is then used to create and
(optionally) display confidence regions.
When bandwidth
is ommited and method="bkde2d"
,
KernSmooth::dpik
is appled in x and y dimensions to select the
bandwidth.
A ci2d
object consisting of a list containing (at least) the
following elements:
nobs |
number of original data points |
x |
x position of each density estimate bin |
y |
y position of each density estimate bin |
density |
Matrix containing the probability density of each bin (count in bin/total count) |
cumDensity |
Matrix where each element contains the cumulative probability density of all elements with the same density (used to create the confidence region plots) |
contours |
List of contours of each confidence region. |
call |
Call used to create this object |
Confidence intervals generated by ci2d are approximate, and are subject to biases and/or artifacts induced by the binning or kernel smoothing method, bin locations, bin sizes, and kernel bandwidth.
The conf2d
function in the r2d2 package may create a more
accurate confidence region, and reports the actual proportion of
points inside the region.
Gregory R. Warnes greg@warnes.net
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | ####
## Basic usage
####
data(geyser, package="MASS")
x <- geyser$duration
y <- geyser$waiting
# 2-d confidence intervals based on binned kernel density estimate
ci2d(x,y) # filled contour plot
ci2d(x,y, show.points=TRUE) # show original data
# image plot
ci2d(x,y, show="image")
ci2d(x,y, show="image", show.points=TRUE)
# contour plot
ci2d(x,y, show="contour", col="black")
ci2d(x,y, show="contour", col="black", show.points=TRUE)
####
## Control Axis scales
####
x <- rnorm(2000, sd=4)
y <- rnorm(2000, sd=1)
# 2-d confidence intervals based on binned kernel density estimate
ci2d(x,y)
# 2-d confidence intervals based on 2d histogram
ci2d(x,y, method="hist2d", nbins=25)
# Require same scale for each axis, this looks oval
ci2d(x,y, range.x=list(c(-20,20), c(-20,20)))
ci2d(x,y, method="hist2d", same.scale=TRUE, nbins=25) # hist2d
####
## Control smoothing and binning
####
x <- rnorm(2000, sd=4)
y <- rnorm(2000, mean=x, sd=2)
# Default 2-d confidence intervals based on binned kernel density estimate
ci2d(x,y)
# change the smoother bandwidth
ci2d(x,y,
bandwidth=c(sd(x)/8, sd(y)/8)
)
# change the smoother number of bins
ci2d(x,y, nbins=10)
ci2d(x,y)
ci2d(x,y, nbins=100)
# Default 2-d confidence intervals based on 2d histogram
ci2d(x,y, method="hist2d", show.points=TRUE)
# change the number of histogram bins
ci2d(x,y, nbin=10, method="hist2d", show.points=TRUE )
ci2d(x,y, nbin=25, method="hist2d", show.points=TRUE )
####
## Perform plotting manually
####
data(geyser, package="MASS")
# let ci2d handle plotting contours...
ci2d(geyser$duration, geyser$waiting, show="contour", col="black")
# call contour() directly, show the 90 percent CI, and the mean point
est <- ci2d(geyser$duration, geyser$waiting, show="none")
contour(est$x, est$y, est$cumDensity,
xlab="duration", ylab="waiting",
levels=0.90, lwd=4, lty=2)
points(mean(geyser$duration), mean(geyser$waiting),
col="red", pch="X")
####
## Extract confidence region values
###
data(geyser, package="MASS")
## Empirical 90 percent confidence limits
quantile( geyser$duration, c(0.05, 0.95) )
quantile( geyser$waiting, c(0.05, 0.95) )
## Bivariate 90 percent confidence region
est <- ci2d(geyser$duration, geyser$waiting, show="none")
names(est$contours) ## show available contours
ci.90 <- est$contours[names(est$contours)=="0.9"] # get region(s)
ci.90 <- rbind(ci.90[[1]],NA, ci.90[[2]], NA, ci.90[[3]]) # join them
print(ci.90) # show full contour
range(ci.90$x, na.rm=TRUE) # range for duration
range(ci.90$y, na.rm=TRUE) # range for waiting
####
## Visually compare confidence regions
####
data(geyser, package="MASS")
## Bivariate smoothed 90 percent confidence region
est <- ci2d(geyser$duration, geyser$waiting, show="none")
names(est$contours) ## show available contours
ci.90 <- est$contours[names(est$contours)=="0.9"] # get region(s)
ci.90 <- rbind(ci.90[[1]],NA, ci.90[[2]], NA, ci.90[[3]]) # join them
plot( waiting ~ duration, data=geyser,
main="Comparison of 90 percent confidence regions" )
polygon( ci.90, col="green", border="green", density=10)
## Univariate Normal-Theory 90 percent confidence region
mean.x <- mean(geyser$duration)
mean.y <- mean(geyser$waiting)
sd.x <- sd(geyser$duration)
sd.y <- sd(geyser$waiting)
t.value <- qt(c(0.05,0.95), df=gdata::nobs(geyser$duration), lower=TRUE)
ci.x <- mean.x + t.value* sd.x
ci.y <- mean.y + t.value* sd.y
plotCI(mean.x, mean.y,
li=ci.x[1],
ui=ci.x[2],
barcol="blue", col="blue",
err="x",
pch="X",
add=TRUE )
plotCI(mean.x, mean.y,
li=ci.y[1],
ui=ci.y[2],
barcol="blue", col="blue",
err="y",
pch=NA,
add=TRUE )
# rect(ci.x[1], ci.y[1], ci.x[2], ci.y[2], border="blue",
# density=5,
# angle=45,
# col="blue" )
## Empirical univariate 90 percent confidence region
box <- cbind( x=quantile( geyser$duration, c(0.05, 0.95 )),
y=quantile( geyser$waiting, c(0.05, 0.95 )) )
rect(box[1,1], box[1,2], box[2,1], box[2,2], border="red",
density=5,
angle=-45,
col="red" )
## now a nice legend
legend( "topright", legend=c(" Region type",
"Univariate Normal Theory",
"Univarite Empirical",
"Smoothed Bivariate"),
lwd=c(NA,1,1,1),
col=c("black","blue","red","green"),
lty=c(NA,1,1,1)
)
####
## Test with a large number of points
####
## Not run:
x <- rnorm(60000, sd=1)
y <- c( rnorm(40000, mean=x, sd=1),
rnorm(20000, mean=x+4, sd=1) )
hist2d(x,y)
ci <- ci2d(x,y)
ci
## End(Not run)
|
Attaching package: 'gplots'
The following object is masked from 'package:stats':
lowess
Warning message:
In bkde2D(x, bandwidth = bandwidth * factor, gridsize = nbins, ...) :
Binning grid too coarse for current (small) bandwidth: consider increasing 'gridsize'
5% 95%
1.781667 4.803333
5% 95%
49 92
[1] "0.5" "0.5" "0.5" "0.75" "0.75" "0.9" "0.9" "0.9" "0.95"
[10] "0.975" "0.975" "0.975" "1" "1" "1" "1"
x y
1 1.526652 78.00100
2 1.520334 78.43451
3 1.505526 79.90177
4 1.498197 81.36902
5 1.490886 82.83628
6 1.479440 84.30353
7 1.462897 85.77079
8 1.449958 87.23804
9 1.440848 88.70530
10 1.442839 90.17255
11 1.454784 91.63981
12 1.472003 93.10706
13 1.500685 94.57432
14 1.526652 95.19393
15 1.559131 96.04157
16 1.617806 97.50883
17 1.627590 97.68333
18 1.714635 98.97608
19 1.728529 99.16754
20 1.829467 99.52422
21 1.902190 98.97608
22 1.930405 98.75198
23 2.001441 97.50883
24 2.031344 96.96819
25 2.085418 96.04157
26 2.132282 95.33502
27 2.215860 94.57432
28 2.233221 94.38900
29 2.317325 93.10706
30 2.334159 92.65774
31 2.364668 91.63981
32 2.379204 90.17255
33 2.383578 88.70530
34 2.386307 87.23804
35 2.388831 85.77079
36 2.399318 84.30353
37 2.435098 82.94130
38 2.536036 83.00782
39 2.576349 82.83628
40 2.636974 82.27676
41 2.667152 81.36902
42 2.688972 79.90177
43 2.694766 78.43451
44 2.684505 76.96726
45 2.655260 75.50000
46 2.636974 75.15474
47 2.569526 74.03274
48 2.536036 73.63059
49 2.435098 72.97800
50 2.405518 72.56549
51 2.334159 71.55041
52 2.313730 71.09823
53 2.251786 69.63098
54 2.233221 69.32254
55 2.142469 68.16372
56 2.132282 68.03823
57 2.031344 67.61998
58 1.930405 67.86785
59 1.904180 68.16372
60 1.829467 68.88220
61 1.764631 69.63098
62 1.728529 70.03697
63 1.661616 71.09823
64 1.627590 71.79147
65 1.592978 72.56549
66 1.562754 74.03274
67 1.543863 75.50000
68 1.533815 76.96726
69 1.526652 78.00100
70 NA NA
71 2.737913 84.36406
72 2.702601 85.77079
73 2.702726 87.23804
74 2.728780 88.70530
75 2.737913 88.92268
76 2.838851 89.49949
77 2.874943 88.70530
78 2.890153 87.23804
79 2.894175 85.77079
80 2.904096 84.30353
81 2.939790 83.29632
82 2.956368 82.83628
83 3.040728 81.45426
84 3.047848 81.36902
85 3.040728 80.91434
86 2.988633 79.90177
87 2.939790 79.77276
88 2.931426 79.90177
89 2.897488 81.36902
90 2.841431 82.83628
91 2.838851 82.84583
92 2.742613 84.30353
93 2.737913 84.36406
94 NA NA
95 3.343544 80.55432
96 3.264362 81.36902
97 3.262814 82.83628
98 3.343544 83.86099
99 3.444482 84.13361
100 3.545420 83.98935
101 3.564810 84.30353
102 3.646359 85.16856
103 3.667276 85.77079
104 3.711371 87.23804
105 3.747297 88.21581
106 3.761295 88.70530
107 3.799563 90.17255
108 3.848236 91.61093
109 3.850149 91.63981
110 3.949174 92.85127
111 4.050113 93.07323
112 4.129626 93.10706
113 4.151051 93.11728
114 4.251989 93.52810
115 4.352928 93.67499
116 4.417983 93.10706
117 4.453866 92.74089
118 4.504468 91.63981
119 4.554805 90.67480
120 4.577976 90.17255
121 4.620989 88.70530
122 4.655743 87.29638
123 4.657465 87.23804
124 4.675729 85.77079
125 4.679825 84.30353
126 4.688109 82.83628
127 4.713564 81.36902
128 4.756682 80.27291
129 4.770533 79.90177
130 4.810875 78.43451
131 4.847559 76.96726
132 4.857620 76.04432
133 4.863988 75.50000
134 4.857620 74.76464
135 4.851404 74.03274
136 4.826268 72.56549
137 4.822707 71.09823
138 4.857620 70.14403
139 4.879648 69.63098
140 4.958558 68.64356
141 4.993910 68.16372
142 5.059497 67.26021
143 5.091469 66.69647
144 5.131592 65.22921
145 5.151538 63.76196
146 5.147964 62.29470
147 5.130174 60.82745
148 5.111120 59.36019
149 5.113432 57.89294
150 5.132810 56.42568
151 5.151330 54.95843
152 5.160435 53.90290
153 5.165968 53.49117
154 5.181295 52.02392
155 5.186603 50.55666
156 5.160435 49.79061
157 5.149455 49.08941
158 5.106121 47.62215
159 5.059497 46.71834
160 5.031109 46.15490
161 4.958558 45.21630
162 4.899437 44.68764
163 4.857620 44.34279
164 4.756682 43.99259
165 4.655743 43.69261
166 4.564788 43.22039
167 4.554805 43.13902
168 4.453866 42.53020
169 4.352928 42.38644
170 4.251989 42.94142
171 4.227531 43.22039
172 4.151051 43.84742
173 4.050113 44.17547
174 3.960667 44.68764
175 3.949174 44.74952
176 3.848236 46.03264
177 3.841648 46.15490
178 3.793690 47.62215
179 3.769244 49.08941
180 3.750798 50.55666
181 3.747297 50.87603
182 3.724850 52.02392
183 3.705749 53.49117
184 3.688124 54.95843
185 3.677953 56.42568
186 3.679643 57.89294
187 3.695465 59.36019
188 3.720085 60.82745
189 3.747297 62.17827
190 3.749205 62.29470
191 3.761016 63.76196
192 3.752194 65.22921
193 3.747297 65.55238
194 3.726328 66.69647
195 3.693492 68.16372
196 3.646359 69.23910
197 3.623416 69.63098
198 3.567201 71.09823
199 3.545420 71.72056
200 3.514052 72.56549
201 3.499421 74.03274
202 3.493647 75.50000
203 3.491131 76.96726
204 3.476675 78.43451
205 3.444482 79.45455
206 3.401653 79.90177
207 3.343544 80.55432
[1] 1.440848 5.186603
[1] 42.38644 99.52422
[1] "0.5" "0.5" "0.5" "0.75" "0.75" "0.9" "0.9" "0.9" "0.95"
[10] "0.975" "0.975" "0.975" "1" "1" "1" "1"
----------------------------
2-D Histogram Object
----------------------------
Call: hist2d(x = x, y = y)
Number of data points: 60000
Number of grid bins: 200 x 200
X range: ( -4.096286 , 4.180189 )
Y range: ( -5.923122 , 9.434675 )
----------------------------
2-D Confidence Region Object
----------------------------
Call: ci2d(x = x, y = y)
Number of data points: 60000
Number of grid points: 51 x 51
Number of confidence regions: 22
Region CI.Level X.Min X.Max Y.Min Y.Max
1 0.500 -1.5153546 1.5150706 -2.129541 2.535363
2 0.500 -0.3840863 0.3240918 3.363941 4.313194
3 0.750 -1.8172888 1.8858040 -2.601723 5.617808
4 0.900 -2.2143158 2.3189890 -3.169647 6.487953
5 0.950 -2.4718404 2.6180558 -3.656855 7.022174
6 0.975 -2.8358501 2.8838681 -3.955321 7.395693
7 1.000 -4.2753717 -4.1026788 -6.222861 -5.903716
8 1.000 -4.2753717 -3.4120533 -2.393114 1.436631
9 1.000 -4.2753717 -1.6849921 1.755777 9.734414
10 1.000 -4.2753717 -4.2753717 5.585522 5.585522
11 1.000 -1.3395915 4.3592755 -6.222861 1.436631
12 1.000 -0.3034340 0.2146443 9.415270 9.734414
13 1.000 0.3873378 0.3873378 -6.222861 -6.222861
14 1.000 1.0781096 4.3592755 5.585523 9.734414
15 1.000 3.1504249 3.1504249 -6.222861 -5.903715
16 1.000 3.1504249 3.1504249 -4.946279 -4.627133
17 1.000 3.1504249 3.1504249 -2.712260 -2.393115
18 1.000 3.4958108 3.4958108 9.415268 9.734414
19 1.000 3.8411967 3.8411967 -1.754824 -1.435678
20 1.000 4.0138896 4.1865825 9.415268 9.734414
21 1.000 4.1865825 4.1865825 -5.584570 -5.584570
22 1.000 4.1865825 4.1865825 -4.627133 -4.627133
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.