Nothing
htobit <- function(formula, data, subset, na.action,
model = TRUE, y = TRUE, x = FALSE,
control = htobit_control(...), ...)
{
## call
cl <- match.call()
if(missing(data)) data <- environment(formula)
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
## formula
oformula <- as.formula(formula)
formula <- as.Formula(formula)
if(length(formula)[2L] < 2L) {
formula <- as.Formula(formula(formula), ~ 1)
} else {
if(length(formula)[2L] > 2L) {
formula <- Formula(formula(formula, rhs = 1L:2L))
warning("formula must not have more than two RHS parts")
}
}
mf$formula <- formula
## evaluate model.frame
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
## extract terms, model matrix, response
mt <- terms(formula, data = data)
mtX <- terms(formula, data = data, rhs = 1L)
mtZ <- delete.response(terms(formula, data = data, rhs = 2L))
Y <- model.response(mf, "numeric")
X <- model.matrix(mtX, mf)
Z <- model.matrix(mtZ, mf)
## sanity check
if(length(Y) < 1) stop("empty model")
n <- length(Y)
## call the actual workhorse: htobit_fit()
rval <- htobit_fit(X, Y, Z, control)
## further model information
rval$call <- cl
rval$formula <- oformula
rval$terms <- list(location = mtX, scale = mtZ, full = mt)
rval$levels <- list(location = .getXlevels(mtX, mf), scale = .getXlevels(mtZ, mf), full = .getXlevels(mt, mf))
rval$contrasts <- list(location = attr(X, "contrasts"), scale = attr(Z, "contrasts"))
if(model) rval$model <- mf
if(y) rval$y <- Y
if(x) rval$x <- list(location = X, scale = Z)
class(rval) <- "htobit"
return(rval)
}
htobit_control <- function(maxit = 5000, start = NULL, grad = TRUE, hessian = TRUE, ...)
{
if(is.logical(hessian)) hessian <- if(hessian) "numderiv" else "none"
if(is.character(hessian)) hessian <- match.arg(tolower(hessian), c("numderiv", "optim", "none"))
ctrl <- c(
list(maxit = maxit, start = start, grad = grad, hessian = hessian),
list(...)
)
if(is.null(ctrl$method)) {
ctrl$method <- if(grad) "BFGS" else "Nelder-Mead"
}
if(!is.null(ctrl$fnscale)) warning("fnscale must not be modified")
ctrl$fnscale <- 1
if(is.null(ctrl$reltol)) ctrl$reltol <- .Machine$double.eps^(1/1.2)
ctrl
}
htobit_fit <- function(x, y, z = NULL, control)
{
## dimensions
n <- length(y)
if(is.null(z)) matrix(1, n, 1, dimnames = list(rownames(x), "(Intercept)"))
m <- ncol(x)
p <- ncol(z)
stopifnot(n == nrow(x), n == nrow(z))
## negative log-likelihood
nll <- function(par) {
beta <- par[1:m]
gamma <- par[m + (1:p)]
mu <- x %*% beta
sigma <- exp(z %*% gamma)
ll <- dnorm(y, mean = mu, sd = sigma, log = TRUE)
y0 <- y <= 0
if(any(y0)) {
ll[y0] <- pnorm(0, mean = mu[y0], sd = sigma[y0], log.p = TRUE)
}
-sum(ll)
}
## negative gradient (contributions)
ngr <- function(par, sum = TRUE) {
## parameters
beta <- par[1:m]
gamma <- par[m + (1:p)]
mu <- x %*% beta
sigma <- exp(z %*% gamma)
## auxiliary: censoring, inverse Mill's ratio, empty score matrix
y0 <- y <= 0
imr <- function(y, mean = 0, sd = 1) {
exp(dnorm(y, mean = mean, sd = sd, log = TRUE) - pnorm(y, mean = mean, sd = sd, log.p = TRUE))
}
rval <- matrix(0, nrow = nrow(x), ncol = ncol(x) + ncol(z))
## uncensored: like Gaussian regression
rval[!y0, ] <- cbind(
(y[!y0] - mu[!y0]) * 1/sigma[!y0]^2 * x[!y0, , drop = FALSE],
((y[!y0] - mu[!y0])^2 * 1/sigma[!y0]^2 - 1) * z[!y0, , drop = FALSE]
)
## censored: like binary probit regression
rval[y0, ] <- -imr(0, mean = mu[y0], sd = sigma[y0]) * cbind(
x[y0, , drop = FALSE],
(y[y0] - mu[y0]) * z[y0, , drop = FALSE]
)
## sum (if desired) and change sign
if(sum) rval <- colSums(rval)
return(-rval)
}
## clean up control arguments
grad <- control$grad
hess <- control$hessian
meth <- control$method
control$grad <- control$hessian <- control$method <- NULL
## starting values (by default via OLS)
if(is.null(control$start)) {
start <- lm.fit(x, y)
start <- c(start$coefficients,
log(mean(start$residuals^2)), rep.int(0, p - 1))
} else {
start <- control$start
stopifnot(length(start) == m + p)
}
control$start <- NULL
## optimization
opt <- if(grad) {
optim(par = start, fn = nll, gr = ngr, control = control, method = meth, hessian = (hess == "optim"))
} else {
optim(par = start, fn = nll, control = control, method = meth, hessian = (hess == "optim"))
}
## compute hessian (if necessary)
if(hess == "none") {
opt <- c(opt, list(hessian = NULL))
} else if(hess == "numderiv") {
opt$hessian <- numDeriv::hessian(nll, opt$par)
}
if(!is.null(opt$hessian)) {
rownames(opt$hessian) <- colnames(opt$hessian) <- c(
colnames(x), paste("(scale)", colnames(z), sep = "_"))
opt$vcov <- solve(opt$hessian)
opt$hessian <- NULL
}
## collect information
names(opt)[1:2] <- c("coefficients", "loglik")
opt$coefficients <- list(
location = opt$coefficients[1:m],
scale = opt$coefficients[m + 1:p]
)
names(opt$coefficients$location) <- colnames(x)
names(opt$coefficients$scale) <- colnames(z)
## residuals and fitted values
## (FIXME: need manifest location/scale - not latent)
mu <- drop(x %*% opt$coefficients$location)
sigma <- exp(drop(z %*% opt$coefficients$scale))
opt$residuals <- y - mu
opt$fitted.values <- list(location = mu, scale = sigma)
## other information
opt$method <- meth
opt$loglik <- -opt$loglik
opt$nobs <- n
opt$df <- m + p
return(opt)
}
logLik.htobit <- function(object, ...) {
structure(object$loglik, df = object$df, class = "logLik")
}
coef.htobit <- function(object, model = c("full", "location", "scale"), ...) {
model <- match.arg(model)
cf <- object$coefficients
switch(model,
"location" = {
cf$location
},
"scale" = {
cf$scale
},
"full" = {
structure(c(cf$location, cf$scale),
.Names = c(names(cf$location), paste("(scale)", names(cf$scale), sep = "_")))
}
)
}
print.htobit <- function(x, digits = max(3, getOption("digits") - 3), ...)
{
cat("Heteroscedastic tobit model\n\n")
if(x$convergence > 0) {
cat("Model did not converge\n")
} else {
if(length(x$coefficients$location)) {
cat("Coefficients (location model):\n")
print.default(format(x$coefficients$location, digits = digits), print.gap = 2, quote = FALSE)
cat("\n")
} else {
cat("No coefficients (in location model)\n\n")
}
if(length(x$coefficients$scale)) {
cat("Coefficients (scale model with log link):\n")
print.default(format(x$coefficients$scale, digits = digits), print.gap = 2, quote = FALSE)
cat("\n")
} else {
cat("No coefficients (in scale model)\n\n")
}
cat(paste("Log-likelihood: ", format(x$loglik, digits = digits), "\n", sep = ""))
if(length(x$df)) {
cat(paste("Df: ", format(x$df, digits = digits), "\n", sep = ""))
}
cat("\n")
}
invisible(x)
}
terms.htobit <- function(x, model = c("location", "scale", "full"), ...) x$terms[[match.arg(model)]]
model.frame.htobit <- function(formula, ...) {
if(!is.null(formula$model)) return(formula$model)
formula$terms <- formula$terms$full
formula$call$formula <- formula$formula <- formula(formula$terms)
NextMethod()
}
model.matrix.htobit <- function(object, model = c("location", "scale"), ...) {
model <- match.arg(model)
rval <- if(!is.null(object$x[[model]])) object$x[[model]]
else model.matrix(object$terms[[model]], model.frame(object), contrasts = object$contrasts[[model]])
return(rval)
}
fitted.htobit <- function(object, type = c("location", "scale"), ...) object$fitted.values[[match.arg(type)]]
predict.htobit <- function(object, newdata = NULL,
type = c("response", "location", "scale", "parameter", "probability", "quantile"),
na.action = na.pass, at = 0.5, ...)
{
## types of prediction
## response/location are synonymous
type <- match.arg(type)
if(type == "location") type <- "response"
## obtain model.frame/model.matrix
tnam <- switch(type,
"response" = "location",
"scale" = "scale",
"full")
if(is.null(newdata)) {
X <- model.matrix(object, model = "location")
Z <- model.matrix(object, model = "scale")
} else {
mf <- model.frame(delete.response(object$terms[[tnam]]), newdata, na.action = na.action, xlev = object$levels[[tnam]])
if(type != "scale") X <- model.matrix(delete.response(object$terms$location), mf, contrasts = object$contrasts$location)
if(type != "response") Z <- model.matrix(object$terms$scale, mf, contrasts = object$contrasts$scale)
}
## predicted parameters
if(type != "scale") location <- drop(X %*% object$coefficients$location)
if(type != "response") scale <- exp(drop(Z %*% object$coefficients$scale))
## compute result
rval <- switch(type,
"response" = location,
"scale" = scale,
"parameter" = data.frame(location, scale),
"probability" = pnorm(at, mean = location, sd = scale),
"quantile" = pmax(0, qnorm(at, mean = location, sd = scale))
)
return(rval)
}
bread.htobit <- function(x, ...) x$vcov * x$nobs
estfun.htobit <- function(x, ...)
{
## observed data and fit
if(is.null(x$y) || is.null(x$x)) {
mf <- model.frame(x)
x$y <- model.response(mf)
x$x <- list(
"location" = model.matrix(x$terms$location, mf),
"scale" = model.matrix(x$terms$scale, mf)
)
}
mu <- x$x$location %*% x$coefficients$location
sigma <- exp(x$x$scale %*% x$coefficients$scale)
## auxiliary: censoring, inverse Mill's ratio, empty score matrix
y0 <- x$y <= 0
imr <- function(y, mean = 0, sd = 1) {
exp(dnorm(y, mean = mean, sd = sd, log = TRUE) - pnorm(y, mean = mean, sd = sd, log.p = TRUE))
}
rval <- matrix(0, nrow = x$nobs, ncol = x$df)
## uncensored: like Gaussian regression
rval[!y0, ] <- cbind(
(x$y[!y0] - mu[!y0]) * 1/sigma[!y0]^2 * x$x$location[!y0, , drop = FALSE],
((x$y[!y0] - mu[!y0])^2 * 1/sigma[!y0]^2 - 1) * x$x$scale[!y0, , drop = FALSE]
)
## censored: like binary probit regression
rval[y0, ] <- -imr(0, mean = mu[y0], sd = sigma[y0]) * cbind(
x$x$location[y0, , drop = FALSE],
(x$y[y0] - mu[y0]) * x$x$scale[y0, , drop = FALSE]
)
## nice column names
colnames(rval) <- c(colnames(x$x$location), paste("(scale)", colnames(x$x$scale), sep = "_"))
return(rval)
}
vcov.htobit <- function(object, model = c("full", "location", "scale"), ...)
{
vc <- object$vcov
k <- length(object$coefficients$location)
m <- length(object$coefficients$scale)
model <- match.arg(model)
switch(model,
"location" = {
vc[seq.int(length.out = k), seq.int(length.out = k), drop = FALSE]
},
"scale" = {
vc <- vc[seq.int(length.out = m) + k, seq.int(length.out = m) + k, drop = FALSE]
colnames(vc) <- rownames(vc) <- names(object$coefficients$scale)
vc
},
"full" = {
vc
}
)
}
summary.htobit <- function(object, ...)
{
## residuals
object$residuals <- object$residuals/object$fitted.values$scale
## extend coefficient table
k <- length(object$coefficients$location)
m <- length(object$coefficients$scale)
cf <- as.vector(do.call("c", object$coefficients))
se <- sqrt(diag(object$vcov))
cf <- cbind(cf, se, cf/se, 2 * pnorm(-abs(cf/se)))
colnames(cf) <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)")
cf <- list(location = cf[seq.int(length.out = k), , drop = FALSE], scale = cf[seq.int(length.out = m) + k, , drop = FALSE])
rownames(cf$location) <- names(object$coefficients$location)
rownames(cf$scale) <- names(object$coefficients$scale)
object$coefficients <- cf
## delete some slots
object$fitted.values <- object$terms <- object$levels <- object$contrasts <- NULL
## return
class(object) <- "summary.htobit"
object
}
print.summary.htobit <- function(x, digits = max(3, getOption("digits") - 3), ...)
{
cat("\nCall:", deparse(x$call, width.cutoff = floor(getOption("width") * 0.85)), "", sep = "\n")
if(x$convergence > 0L) {
cat("model did not converge\n")
} else {
cat(paste("Standardized residuals:\n", sep = ""))
print(structure(round(as.vector(quantile(x$residuals)), digits = digits),
.Names = c("Min", "1Q", "Median", "3Q", "Max")))
if(NROW(x$coefficients$location)) {
cat(paste("\nCoefficients (location model):\n", sep = ""))
printCoefmat(x$coefficients$location, digits = digits, signif.legend = FALSE)
} else cat("\nNo coefficients (in location model)\n")
if(NROW(x$coefficients$scale)) {
cat(paste("\nCoefficients (scale model with log link):\n", sep = ""))
printCoefmat(x$coefficients$scale, digits = digits, signif.legend = FALSE)
} else cat("\nNo coefficients ( in scale model)\n")
if(getOption("show.signif.stars") & any(do.call("rbind", x$coefficients)[, 4L] < 0.1, na.rm = TRUE))
cat("---\nSignif. codes: ", "0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1", "\n")
cat("\nLog-likelihood:", formatC(x$loglik, digits = digits),
"on", sum(sapply(x$coefficients, NROW)), "Df\n")
cat(paste("Number of iterations in", x$method, "optimization:", x$count[2L], "\n"))
}
invisible(x)
}
residuals.htobit <- function(object, type = c("standardized", "pearson", "response"), ...) {
if(match.arg(type) == "response") {
object$residuals
} else {
object$residuals/object$fitted.values$scale
}
}
update.htobit <- function (object, formula., ..., evaluate = TRUE)
{
call <- object$call
if(is.null(call)) stop("need an object with call component")
extras <- match.call(expand.dots = FALSE)$...
if(!missing(formula.)) call$formula <- formula(update(Formula(formula(object)), formula.))
if(length(extras)) {
existing <- !is.na(match(names(extras), names(call)))
for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
if(any(!existing)) {
call <- c(as.list(call), extras[!existing])
call <- as.call(call)
}
}
if(evaluate) eval(call, parent.frame())
else call
}
getSummary.htobit <- function(obj, alpha = 0.05, ...) {
## extract coefficient summary
s <- summary(obj)
cf <- s$coefficients
## augment with confidence intervals
cval <- qnorm(1 - alpha/2)
for(i in seq_along(cf)) cf[[i]] <- cbind(cf[[i]],
cf[[i]][, 1] - cval * cf[[i]][, 2],
cf[[i]][, 1] + cval * cf[[i]][, 2])
## collect in array
nam <- unique(unlist(lapply(cf, rownames)))
acf <- array(dim = c(length(nam), 6, length(cf)),
dimnames = list(nam, c("est", "se", "stat", "p", "lwr", "upr"), names(cf)))
for(i in seq_along(cf)) acf[rownames(cf[[i]]), , i] <- cf[[i]]
## contrasts (omitting duplicates between location and scale part) and factor levels
ctr <- c(obj$contrasts$location, obj$contrasts$scale)
ctr <- ctr[!duplicated(names(ctr))]
xlev <- obj$levels$full
## return everything
return(list(
coef = acf,
sumstat = c(
"N" = obj$nobs,
"logLik" = as.vector(logLik(obj)),
"AIC" = AIC(obj),
"BIC" = AIC(obj, k = log(obj$nobs))
),
contrasts = ctr,
xlevels = xlev,
call = obj$call
))
}
## setSummaryTemplate("htobit" = c(
## "Log-likelihood" = "($logLik:f#)",
## "AIC" = "($AIC:f#)",
## "BIC" = "($BIC:f#)",
## "N" = "($N:d)"
## ))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.