Nothing
#### Testing medcouple mc() and related functions
### here, we do "strict tests" -- hence no *.Rout.save
### hence, can also produce non-reproducible output such as timing
library(robustbase)
for(f in system.file("xtraR", c("mcnaive.R", # -> mcNaive()
"styleData.R", # -> smallD list of small datasets
"platform-sessionInfo.R"), # -> moreSessionInfo()
package = "robustbase", mustWork=TRUE)) {
cat("source(",f,"):\n", sep="")
source(f)
}
## instead of relying on system.file("test-tools-1.R", package="Matrix"):
source(system.file("xtraR/test-tools.R", package = "robustbase")) # assert.EQ() etc
assertEQm12 <- function(x,y, giveRE=TRUE, ...)
assert.EQ(x,y, tol = 1e-12, giveRE=giveRE, ...)
## ^^ shows *any* difference ("tol = 0") unless there is no difference at all
##
c.time <- function(...) cat('Time elapsed: ', ..., '\n')
S.time <- function(expr) c.time(system.time(expr))
DO <- function(...) S.time(stopifnot(...))
## from {sfsmisc}:
lseq <- function(from, to, length) exp(seq(log(from), log(to), length.out = length))
mS <- moreSessionInfo(print.=TRUE)
(doExtras <- robustbase:::doExtras())# TRUE if interactive() or activated by envvar
if(!dev.interactive(orNone=TRUE)) pdf("mc-strict.pdf")
tools::assertCondition(mc(1:11), "message") # change of default to doScale=FALSE
smlMC <- vapply(smallD, mc, pi)
smlMCo <- vapply(smallD, mc, pi, doScale=TRUE, c.huberize=Inf)
yI <- c("yI", "yI."); notI <- setdiff(names(smallD), yI)
yI2 <- c(yI, "x3I"); notI2 <- setdiff(names(smallD), yI2)
assert.EQ(smlMC [notI],
smlMCo[notI], tol = 4e-11, giveRE=TRUE)
## above small diff. is from 'x3I'; dropping that, too, leaves no differences
table(smlMC [notI2] == smlMCo[notI2])
n.set <- c(1:99, 1e5L+ 0:1) # large n gave integer overflow in earlier versions
DO(0 == sapply(n.set, function(n) mc(seq_len(n))))
DO(0 == sapply(n.set, function(n) mc(seq_len(n), doRefl=FALSE)))
DO(0 == sapply(1:100, function(n) mcNaive(seq_len(n), "simple")))
DO(0 == sapply(1:100, function(n) mcNaive(seq_len(n), "h.use" )))
x1 <- c(1, 2, 7, 9, 10)
mcNaive(x1) # = -1/3
assertEQm12(-1/3, mcNaive(x1, "simple"))
assertEQm12(-1/3, mcNaive(x1, "h.use"))
assertEQm12(-1/3, mc(x1))
x2 <- c(-1, 0, 0, 0, 1, 2)
mcNaive(x2, meth="simple") # = 0 - which is wrong
mcNaive(x2, meth="h.use") # = 1/6 = 0.16666
assertEQm12(1/6, mc(x2))
assertEQm12(1/6, mcNaive(x2, "h.use"))
x4 <- c(1:5,7,10,15,25, 1e15) ## - bombed in original algo
mcNaive(x4,"h.use") # 0.5833333
assertEQm12( 7/12, mcNaive(x4, "h.use"))
assertEQm12( 7/12, mcNaive(x4, "simple"))
assertEQm12( 7/12, mc( x4, doRefl= FALSE))
assertEQm12(-7/12, mc(-x4, doRefl= FALSE))
xx <- c(-3, -3, -2, -2, -1, rep(0, 6), 1, 1, 1, 2, 2, 3, 3, 5)
stopifnot(exprs = {
mc(xx, doScale=TRUE , c.huberize = Inf) == 0 ## old mc()
mc(xx) == 0
mc(xx, doReflect=FALSE) == 0
-mc(-xx, doReflect=FALSE) == 0
mcNaive(xx, "h.use" ) == 0
mcNaive(xx, "simple") == 0
})
set.seed(17)
for(n in 3:50) {
cat(" ")
for(k in 1:5) {
x <- rlnorm(n)
mc1 <- mc(x)
mc2 <- mcNaive(x, method = "simple")
mc3 <- mcNaive(x, method = "h.use" )
stopifnot(all.equal(mc1, mc3, tolerance = 1e-10),# 1e-12 not quite ok
mc2 == mc3)
cat(".")
}
}; cat("\n")
###---- Strict tests of adjOutlyingness():
### ================= changed after long-standing bug fix in Oct.2014
## For longley, note n < 4p and hence "random nonsense" numbers
set.seed(1); S.time(a1.1 <- adjOutlyingness(longley))
set.seed(11); S.time(a1.2 <- adjOutlyingness(longley))
##
set.seed(2); S.time(a2 <- adjOutlyingness(hbk)) # 75 x 4
set.seed(3); S.time(a3 <- adjOutlyingness(hbk[, 1:3]))# the 'X' space
set.seed(4); S.time(a4 <- adjOutlyingness(milk)) # obs.63 = obs.64
set.seed(5); S.time(a5 <- adjOutlyingness(wood)) # 20 x 6 ==> n < 4p
set.seed(6); S.time(a6 <- adjOutlyingness(wood[, 1:5]))# ('X' space) 20 x 5: n = 4p (ok!)
## 32-bit <-> 64-bit different results {tested on Linux only}
is32 <- .Machine$sizeof.pointer == 4 ## <- should work for Linux/MacOS/Windows
isMac <- Sys.info()[["sysname"]] == "Darwin"
isSun <- Sys.info()[["sysname"]] == "SunOS"
Rnk <- function(u) rank(unname(u), ties.method = "first")
## to use for testing below:
cat("\nRnk(a3 $ adjout): "); dput(Rnk(a3$adjout), control= {})
cat("\nRnk(a4 $ adjout): "); dput(Rnk(a4$adjout), control= {})
(i.a4Out <- which( ! a4$nonOut)) # the outliers -- varies "wildly"
stopifnot(70 %in% i.a4Out)
{
if(is32 && !isMac)
all.equal(i.a4Out, c(1, 2, 41, 70))
## and this is "typically" true, but not for a 64-bit Linux version bypassing BLAS in matprod
else if(isSun || isMac)
TRUE
else if(length(osVersion) && grepl("^Fedora", osVersion) && !is32)
identical(i.a4Out, 70L) # since Dec 2020 (F 32)
else
all.equal(i.a4Out, c(9:19, 23:27,57, 59, 70, 77))
}
## only for ATLAS (BLAS/Lapack), not all are TRUE; which ones [but n < 4p]
if(!all(a5$nonOut))
print(which(!a5$nonOut)) # if we know, enable check below
stopifnot(exprs = {
which(!a2$nonOut) == 1:14
which(!a3$nonOut) == 1:14
## 'longley', 'wood' have no outliers in the "adjOut" sense:
if(doExtras && !isMac) { ## longley also has n < 4p (!)
if(mS$ strictR)
sum(a1.2$nonOut) >= 15 # sum(.) = 16 [nb-mm3, Oct.2014]
else ## however, openBLAS Fedora Linux /usr/bin/R gives sum(a1.2$nonOut) = 13
sum(a1.2$nonOut) >= 13
} else TRUE
if(doExtras) { ## have n < 4p (!)
if(mS$ strictR) a5$nonOut
else ## not for ATLAS
sum(a5$nonOut) >= 18 # 18: OpenBLAS
} else TRUE
a6$nonOut[-20]
## hbk (n = 75, p = 3) should be "stable" (but isn't quite)
abs(Rnk(a3$adjout) -
c(62, 64, 69, 71, 70, 66, 65, 63, 68, 67, 73, 75, 72, 74, 35,
60, 55, 4, 22, 36, 6, 33, 34, 28, 53, 16, 13, 9, 27, 31,
49, 39, 20, 50, 14, 2, 24, 40, 54, 21, 17, 37, 52, 23, 58,
19, 61, 11, 25, 8, 46, 59, 48, 47, 29, 44, 43, 42, 7, 30,
18, 51, 41, 15, 10, 38, 3, 56, 57, 5, 1, 12, 26, 32, 45)
) <= 3 ## all 0 on 64-bit (F 32) Linux
})
## milk (n = 86) : -- Quite platform dependent!
r <- Rnk(a4$adjout)
r64 <- ## the 64-bit (ubuntu 14.04, nb-mm3) values:
c(65, 66, 61, 56, 47, 51, 19, 37, 74, 67, 79, 86, 83, 84, 85,
82, 81, 73, 80, 55, 27, 3, 70, 68, 78, 76, 77, 53, 48, 8,
29, 33, 6, 32, 28, 31, 36, 40, 22, 58, 64, 52, 39, 63, 44,
30, 57, 46, 43, 45, 25, 54, 12, 1, 9, 2, 71, 14, 75, 23,
4, 10, 34, 35, 17, 24, 15, 20, 38, 72, 42, 13, 50, 60, 62,
26, 69, 18, 5, 21, 7, 49, 11, 41, 59, 16)
r32 <- ## Linux 32bit (florence: 3.14.8-100.fc19.i686.PAE)
c(78, 79, 72, 66, 52, 61, 22, 41, 53, 14, 74, 85, 82, 83, 84,
80, 81, 56, 73, 65, 30, 3, 16, 17, 68, 57, 58, 63, 54, 8,
32, 37, 6, 36, 31, 35, 40, 44, 25, 69, 77, 62, 43, 76, 48,
34, 67, 51, 47, 49, 28, 64, 12, 1, 9, 2, 33, 15, 59, 26,
4, 10, 38, 39, 20, 27, 18, 23, 42, 86, 46, 13, 60, 71, 75,
29, 50, 21, 5, 24, 7, 55, 11, 45, 70, 19)
d <- (r - if (is32) r32 else r64)
cbind(r, d)
table(abs(d))
cumsum(table(abs(d))) # <=> unscaled ecdf(d)
## For the biggest part (79 out of 86), the ranks are "close":
## 2014: still true, but in a different sense..
## ^ typically, but e.g., *not* when using non-BLAS matprod():
sum(abs(d) <= 17) >= 78
sum(abs(d) <= 13) >= 75
## check of adjOutlyingness *free* bug
## reported by Kaveh Vakili <Kaveh.Vakili@wis.kuleuven.be>
set.seed(-37665251)
X <- matrix(rnorm(100*5), 100, 5)
Z <- matrix(rnorm(10*5)/100, 10, 5)
Z[,1] <- Z[,1] + 5
X[91:100,] <- Z # if anything these should be outliers, but ...
for (i in 1:10) {
## this would produce an error in the 6th iteration
aa <- adjOutlyingness(x=X, ndir=250)
if(any(is.out <- !aa$nonOut))
cat("'outliers' at obs.", paste(which(is.out), collapse=", "),"\n")
stopifnot(1/4 < aa$adjout & aa$adjout < 16)
}
## Check "high"-dimensional Noise ... typically mc() did *not* converge for some re-centered columns
## Example by Valentin Todorov:
n <- 50
p <- 30
set.seed(1) # MM
a <- matrix(rnorm(n * p), nrow=n, ncol=p)
str(a)
kappa(a) # 20.42 (~ 10--20 or so; definitely not close to singular)
a.a <- adjOutlyingness(a, mcScale=FALSE, # <- my own recommendation
trace.lev=1)
a.s <- adjOutlyingness(a, mcScale=TRUE, trace.lev=1)
## a.a :
str(a.a) # high 'adjout' values "all similar" -> no outliers .. hmm .. ???
(hdOut <- which( ! a.a$nonOut)) ## indices of "outlier" -- very platform dependent !
a.a$MCadjout; all.equal(a.a$MCadjout, 0.136839766177,
tol = 1e-12) # seen 7.65e-14 and "big" differences on non-default platforms
## a.s :
which(! a.s$nonOut ) # none [all TRUE]
a.s$MCadjout # platform dependent; saw
all.equal(a.s$MCadjout, 0.32284906741568, tol = 1e-13) # seen 2.2e-15 ..
# and big diffs on non-default platforms
##
## The adjout values are all > 10^15 !!! why ??
## Now (2021) I know: n < 4*p ==> can find 1D-projection where 1 of the 2 {Q3-Q2, Q2-Q1} is 0 !
##---------------------------------------------------------------------------------------------
###-- Back to mc() checks for "hard" cases
### ===== -----------------------
## "large n" (this did overflow sum_p, sum_q earlier ==> had inf.loop):
set.seed(3); x <- rnorm(2e5)
(mx <- mc(x, trace.lev=3))
stopifnot(print(abs(mx - -0.000772315846101988)) < 1e-15)
# 3.252e-19, 64b Linux
# 1.198e-16, 32b Windows
### Some platform info :
local({ nms <- names(Si <- Sys.info())
dropNms <- c("nodename", "machine", "login")
structure(Si[c("nodename", nms[is.na(match(nms, dropNms))])],
class="simple.list") })
if(identical(1L, grep("linux", R.version[["os"]]))) { ##----- Linux - only ----
##
Sys.procinfo <- function(procfile)
{
l2 <- strsplit(readLines(procfile),"[ \t]*:[ \t]*")
r <- sapply(l2[sapply(l2, length) == 2],
function(c2)structure(c2[2], names= c2[1]))
attr(r,"Name") <- procfile
class(r) <- "simple.list"
r
}
##
Scpu <- Sys.procinfo("/proc/cpuinfo")
Smem <- Sys.procinfo("/proc/meminfo")
print(Scpu[c("model name", "cpu MHz", "cache size", "bogomips")])
print(Smem[c("MemTotal", "SwapTotal")])
}
##' Checking the breakdown point of mc() --- Hubert et al. theory said : 25%
##' using non-default doReflect=FALSE as that corresponds to original Hubert et al.
##'
##' @title Medcouple mc() checking
##' @param x
##' @param Xfun
##' @param eps
##' @param NAiferror
##' @param doReflect
##' @param ...
##' @return mc(*,..) or NaN in case mc() signals an error [non-convergence]
##' @author Martin Maechler
mcX <- function(x, Xfun, eps=0, NAiferror=FALSE, doReflect=FALSE, ...) {
stopifnot(is.numeric(x), is.function(Xfun), "eps" %in% names(formals(Xfun)))
myFun <-
if(NAiferror)
function(u) tryCatch(mc(Xfun(u, eps=eps), doReflect=doReflect, ...),
error = function(e) NaN)
else
function(u) mc(Xfun(u, eps=eps), doReflect=doReflect, ...)
vapply(x, myFun, 1.)
}
X1. <- function(u, eps=0) c(1,2,3, 7+(-10:10)*eps, u + (-1:1)*eps)
## ==> This *did* breakdown [but points not "in general position"]:
## but now is stable:
r.mc1 <- curve(mcX(x, X1.), 10, 1e35, log="x", n=1001)
stopifnot(r.mc1$y == 0) # now stable
if(FALSE) {
rt1 <- uniroot(function(x) mcX(exp(x), X1.) - 1/2, lower=0, upper=500)
exp(rt1$root) # 4.056265e+31
}
## eps > 0 ==> No duplicated points ==> theory says breakdown point = 0.25
## ------- but get big numerical problems:
if(FALSE) { # ==> convergence problem [also in maxit = 1e5] .. really an *inf* loop!
r.mc1.1 <- curve(mcX(x, X1., eps= .1 ), 10, 1e35, log="x", n=1001)
r.mc1.2 <- curve(mcX(x, X1., eps= .01 ), 10, 1e35, log="x", n=1001)
r.mc1.3 <- curve(mcX(x, X1., eps= .001), 10, 1e35, log="x", n=1001)
r.mc1.5 <- curve(mcX(x, X1., eps= 1e-5), 10, 1e35, log="x", n=1001)
r.mc1.8 <- curve(mcX(x, X1., eps= 1e-8), 10, 1e35, log="x", n=1001)
r.mc1.15 <- curve(mcX(x, X1., eps=1e-15), 10, 1e35, log="x", n=1001)# still!
}
## practically identical to eps = 0 where we have breakdown (see above)
r.mc1.16 <- curve(mcX(x, X1., eps=1e-16), 10, 1e35, log="x", n=1001)
all.equal(r.mc1, r.mc1.16, tol=1e-15)#-> TRUE
## Quite bad case: Non convergence
X2. <- function(u) c(1:3, seq(6, 8, by = 1/8), u, u, u)
## try(mc(X2.(4.3e31)))## -> error: no convergence
## but now
stopifnot(exprs = {
all.equal(1/30, mc(X2.(4.3e31)), tol=1e-12)
all.equal(1/30, mc(X2.(4.3e31), eps1=1e-7, eps2=1e-100), tol=1e-12)
})
## related, more direct:
X3. <- function(u) c(10*(1:3), 60:80, (4:6)*u)
stopifnot(0 == mc(X3.(1e31), trace=5)) # fine convergence in one iter.
stopifnot(0 == mc(X3.(1e32), trace=3)) # did *not* converge
### TODO : find example with *smaller* sample size -- with no convergence
X4. <- function(u, eps, ...) c(10, 70:75, (2:3)*u)
mc(X4.(1e34))# "fine"
## now stable too:
r.mc4 <- curve(mcX(x, X4.), 100, 1e35, log="x", n=2^12)
stopifnot(abs(1/3 - r.mc4$y) < 1e-15)
X5. <- function(u) c(10*(1:3), 70:78, (4:6)*u)
stopifnot(all.equal(4/15, mc(X5.(1e32), maxit=1000)))
X5. <- function(u, eps,...) c(5*(1:12), (4:6)*u)
str(r.mc5 <- mc(X5.(1e32), doReflect=FALSE, full.result = TRUE))
## Now, stable:
stopifnot(all.equal(1/5, c(r.mc5))) ## was 1; platform dependent ..
stopifnot(all.equal(4/15, mc(X5.(5e31)))) # had no convergence w/ maxit=10000
r.mc5Sml <- curve(mcX(x, X5.), 1, 100, log="x", n=1024) ## quite astonishing
x <- lseq(1, 1e200, 2^11)
mc5L <- mcX(x, X5.)
table(err <- abs(0.2 - mc5L[x >= 24])) # I see all 0!
stopifnot(abs(err) < 1e-15)
c.time(proc.time())
summary(warnings()) # seen 15 x In mcComp(....) :
## maximal number of iterations (100 =? 100) reached prematurely
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.