Nothing
`summary.predict.mex` <-
function( object, mth, probs=c( .05, .5, .95 ), ... ){
if ( is.R() ) stdev <- function( x ) sqrt( var( x ) )
if ( missing( mth ) ) mth <- object$mth
if (!is.null(object$replicates)){
res <- t( sapply( object$replicates , function ( x ) apply( x, 2, mean ) ) )
}
else {
res <- object$data$simulated
}
# Create summary function
sumfun <- if (!is.null(object$replicates)){
function( x , probs){
c( mean=mean( x ), se=stdev( x ) , quantile( x, probs=probs ) )
}
}
else {
function(x, probs){
c(mean=mean(x), quantile(x, probs=probs))
}
}
ans <- apply( res, 2, sumfun, probs ) # Summary of expected values
dn <- paste( dimnames( object$data$simulated)[[ 2 ]] ,"|", names( object$data$simulated )[[ 1 ]] , ">Q",100*object$pqu, sep="" )
dimnames( ans )[[ 2 ]] <- dn
# Get the threshold exceedence probabilities
if (!is.null(object$replicates)){
thres <- t( sapply( 1:( dim( object$replicates[[ 1 ]] )[[ 2 ]] ) ,
function( i, x, mth ){
x <- sapply( x , function( x, i ) x[,i], i=i )
mth <- mth[ i ]
apply( x , 2, function( x, mth )
mean( x > mth ),
mth = mth )
}, x=object$replicates, mth = mth ) )
thres <- apply( thres, 1, mean )
thres <- matrix( thres, nrow=1 )
}
else {
thres <- sapply(1:dim(object$data$simulated)[[2]], function(i, x, mth){ mean(x[,i] > mth[i]) },
x = object$data$simulated, mth=mth)
thres <- matrix(thres, nrow=1)
}
wn <- dimnames( object$data$simulated )[[ 2 ]][ 1 ]
wth <- paste( "Q", 100*object$pqu, sep = "" )
dn <- paste( "P(", dimnames( object$data$simulated )[[ 2 ]] , ">", signif(mth, ...),"|", wn, ">", wth, ")", sep = "" )
dimnames( thres ) <- list( "", dn )
ans <- list( ans=ans, thres=thres, call=object$call, pqu=object$pqu ,
B = length( object$replicates ),
which = names( object$data$simulated )[[ 1 ]],
statistic=deparse( substitute( statistic ) )
)
oldClass(ans) <- "summary.predict.mex"
ans
}
`print.summary.predict.mex` <-
function( x, ... ){
print( x$call, ... )
if (x$B > 0){
cat( "\nResults from", x$B, "bootstrap runs.\n" )
}
cat( paste( "\nConditioned on ", x$which, " being above its ", 100*x$pqu, "th percentile.\n\n", sep = "" ) )
cat( "\nConditional Mean and Quantiles:\n\n" )
print( signif(x$ans,3), ... )
cat( "\nConditional probability of threshold exceedance:\n\n" )
print( signif(x$thres,3), ... )
invisible()
}
show.summary.predict.mex <- print.summary.predict.mex
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.