Nothing
# Tests for Box-Cox type regularized regression models
test_that("Regularized Box-Cox models", {
## Set up and model fit
data("cars", package = "datasets")
cars <- as.data.frame(scale(cars))
mt <- BoxCoxNET(speed ~ dist, data = cars, alpha = 0, lambda = 0)
m2 <- BoxCox(speed ~ dist, data = cars)
expect_lt(max(abs(coef(mt, with_baseline = FALSE) -
coef(m2, with_baseline = FALSE))), 1e-5)
expect_equal(logLik(mt)[1], logLik(m2)[1])
expect_no_error(cvl_tramnet(mt))
expect_no_error({
## methods
logLik(mt, newdata = cars[2, ])
coef(mt, tol = 0, with_baseline = TRUE)
c(residuals(mt)[1:10])
predict(mt, type = "distribution", q = 1)[, 1:10]
as.double(predict(mt, type = "quantile", prob = 0.5))
as.double(simulate(mt)[1:5,])
as.data.frame(head(estfun(mt)))
plot(mt, type = "survivor")
plot(mt, type = "density", K = 120)
print(mt)
})
})
test_that("Constraints", {
## Test for additional inequality constraints on beta
data("cars", package = "datasets")
m2 <- BoxCox(speed ~ dist, data = cars, constraints = c("dist <= 0"))
lhs <- attr(model.matrix(m2), "constraint")$ui
rhs <- attr(model.matrix(m2), "constraint")$ci
mt <- BoxCoxNET(speed ~ dist, data = cars, alpha = 0, lambda = 0, constraints = list(lhs, rhs))
expect_lt(
max(abs(coef(mt, with_baseline = FALSE) -
coef(m2, with_baseline = FALSE)[-2])),
1e-5
)
expect_equal(logLik(mt)[1], logLik(m2)[1], tolerance = 1e-3)
})
test_that("Alias", {
expect_no_error({
data("cars", package = "datasets")
LmNET(speed ~ dist, data = cars, alpha = 0, lambda = 0)
SurvregNET(speed ~ dist, data = cars, alpha = 0, lambda = 0)
LehmannNET(speed ~ dist, data = cars, alpha = 0, lambda = 0)
CoxphNET(speed ~ dist, data = cars, alpha = 0, lambda = 0)
})
})
test_that("Stratified", {
dat <- data.frame(y = runif(100), s = factor(rep(c(1, 2), each = 50)))
x <- scale(matrix(rnorm(100 * 20, mean = 0, sd = 1), nrow = 100))
colnames(x) <- paste0("X", 1:20)
y2 <- Lm(y | 0 + s ~ 1, data = dat)
expect_no_error(tramnet(y2, x, lambda = 8, alpha = 1))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.