Nothing
`capscale` <-
function (formula, data, distance = "euclidean", sqrt.dist = FALSE,
comm = NULL, add = FALSE, dfun = vegdist,
metaMDSdist = FALSE, na.action = na.fail, subset = NULL, ...)
{
EPS <- sqrt(.Machine$double.eps)
if (!inherits(formula, "formula"))
stop("Needs a model formula")
if (missing(data)) {
data <- parent.frame()
}
else {
data <- ordiGetData(match.call(), environment(formula))
}
formula <- formula(terms(formula, data = data))
## The following line was eval'ed in environment(formula), but
## that made update() fail. Rethink the line if capscale() fails
## mysteriously at this point.
X <- eval(formula[[2]], envir=environment(formula),
enclos = globalenv())
## see if user supplied dissimilarities as a matrix
if ((is.matrix(X) || is.data.frame(X)) &&
isSymmetric(unname(as.matrix(X))))
X <- as.dist(X)
if (!inherits(X, "dist")) {
comm <- X
dfun <- match.fun(dfun)
if (metaMDSdist) {
commname <- as.character(formula[[2]])
X <- metaMDSdist(comm, distance = distance, zerodist = "ignore",
commname = commname, distfun = dfun, ...)
commname <- attr(X, "commname")
comm <- eval.parent(parse(text=commname))
} else {
X <- dfun(X, distance)
}
}
inertia <- attr(X, "method")
if (is.null(inertia))
inertia <- "unknown"
inertia <- paste(toupper(substr(inertia, 1, 1)), substr(inertia,
2, 256), sep = "")
inertia <- paste(inertia, "distance")
if (!sqrt.dist)
inertia <- paste("squared", inertia)
if (add)
inertia <- paste(inertia, "(euclidified)")
## evaluate formula: ordiParseFormula will return dissimilarities
## as a symmetric square matrix (except that some rows may be
## deleted due to missing values)
d <- ordiParseFormula(formula,
data,
na.action = na.action,
subset = substitute(subset))
## ordiParseFormula subsets rows of dissimilarities: do the same
## for columns ('comm' is handled later). ordiParseFormula
## returned the original data, but we use instead the potentially
## changed X and discard d$X.
if (!is.null(d$subset)) {
X <- as.matrix(X)[d$subset, d$subset, drop = FALSE]
}
## Delete columns if rows were deleted due to missing values
if (!is.null(d$na.action)) {
X <- as.matrix(X)[-d$na.action, -d$na.action, drop = FALSE]
}
X <- as.dist(X)
k <- attr(X, "Size") - 1
if (sqrt.dist)
X <- sqrt(X)
if (max(X) >= 4 + .Machine$double.eps) {
inertia <- paste("mean", inertia)
adjust <- 1
}
else {
adjust <- sqrt(k)
}
nm <- attr(X, "Labels")
## cmdscale is only used if 'add = TRUE': it cannot properly
## handle negative eigenvalues and therefore we normally use
## wcmdscale. If we have 'add = TRUE' there will be no negative
## eigenvalues and this is not a problem.
if (add) {
X <- cmdscale(X, k = k, eig = TRUE, add = add)
## All eigenvalues *should* be positive, but see that they are
X$eig <- X$eig[X$eig > 0]
}
else
X <- wcmdscale(X, eig = TRUE)
if (is.null(rownames(X$points)))
rownames(X$points) <- nm
X$points <- adjust * X$points
## We adjust eigenvalues to variances, and simultaneously the
## possible negative axes must be adjusted similarly
if (adjust == 1) {
X$eig <- X$eig/k
if (!is.null(X$negaxes))
X$negaxes <- X$negaxes/sqrt(k)
}
sol <- rda.default(X$points, d$Y, d$Z, ...)
if (!is.null(sol$CCA) && sol$CCA$rank > 0) {
colnames(sol$CCA$u) <- colnames(sol$CCA$biplot) <- names(sol$CCA$eig) <-
colnames(sol$CCA$wa) <- colnames(sol$CCA$v) <-
paste("CAP", 1:ncol(sol$CCA$u), sep = "")
}
if (!is.null(sol$CA) && sol$CA$rank > 0) {
colnames(sol$CA$u) <- names(sol$CA$eig) <- colnames(sol$CA$v) <-
paste("MDS", 1:ncol(sol$CA$u), sep = "")
}
## update for negative eigenvalues
poseig <- length(sol$CA$eig)
if (any(X$eig < 0)) {
negax <- X$eig[X$eig < 0]
sol$CA$imaginary.chi <- sum(negax)
sol$tot.chi <- sol$tot.chi + sol$CA$imaginary.chi
sol$CA$imaginary.rank <- length(negax)
sol$CA$imaginary.u.eig <- X$negaxes
}
if (!is.null(comm)) {
comm <- scale(comm, center = TRUE, scale = FALSE)
sol$colsum <- apply(comm, 2, sd)
## take a 'subset' of the community after scale()
if (!is.null(d$subset))
comm <- comm[d$subset, , drop = FALSE]
## NA action after 'subset'
if (!is.null(d$na.action))
comm <- comm[-d$na.action, , drop = FALSE]
if (!is.null(sol$pCCA) && sol$pCCA$rank > 0)
comm <- qr.resid(sol$pCCA$QR, comm)
if (!is.null(sol$CCA) && sol$CCA$rank > 0) {
v.eig <- t(comm) %*% sol$CCA$u/sqrt(k)
sol$CCA$v <- decostand(v.eig, "normalize", MARGIN = 2)
comm <- qr.resid(sol$CCA$QR, comm)
}
if (!is.null(sol$CA) && sol$CA$rank > 0) {
v.eig <- t(comm) %*% sol$CA$u/sqrt(k)
sol$CA$v <- decostand(v.eig, "normalize", MARGIN = 2)
}
} else {
## input data were dissimilarities, and no 'comm' defined:
## species scores make no sense and are made NA
sol$CA$v[] <- NA
if (!is.null(sol$CCA))
sol$CCA$v[] <- NA
sol$colsum <- NA
}
if (!is.null(sol$CCA) && sol$CCA$rank > 0)
sol$CCA$centroids <- centroids.cca(sol$CCA$wa, d$modelframe)
if (!is.null(sol$CCA$alias))
sol$CCA$centroids <- unique(sol$CCA$centroids)
if (!is.null(sol$CCA$centroids)) {
rs <- rowSums(sol$CCA$centroids^2)
sol$CCA$centroids <- sol$CCA$centroids[rs > 1e-04, ,
drop = FALSE]
if (nrow(sol$CCA$centroids) == 0)
sol$CCA$centroids <- NULL
}
sol$call <- match.call()
sol$terms <- terms(formula, "Condition", data = data)
sol$terminfo <- ordiTerminfo(d, data)
sol$call$formula <- formula(d$terms, width.cutoff = 500)
sol$call$formula[[2]] <- formula[[2]]
sol$method <- "capscale"
if (add)
sol$ac <- X$ac
sol$adjust <- adjust
sol$inertia <- inertia
if (metaMDSdist)
sol$metaMDSdist <- commname
sol$subset <- d$subset
sol$na.action <- d$na.action
class(sol) <- c("capscale", class(sol))
if (!is.null(sol$na.action))
sol <- ordiNAexclude(sol, d$excluded)
sol
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.