Nothing
`ordiParseFormula` <-
function (formula, data, xlev = NULL, na.action = na.fail,
subset = NULL)
{
if (missing(data))
data <- environment(formula)
Terms <- terms(formula, "Condition", data = data)
flapart <- fla <- formula <- formula(Terms, width.cutoff = 500)
specdata <- formula[[2]]
X <- eval(specdata, environment(formula), enclos=globalenv())
## X is usually a matrix, but it is "dist" with capscale():
X <- as.matrix(X)
indPartial <- attr(Terms, "specials")$Condition
zmf <- ymf <- Y <- Z <- NULL
formula[[2]] <- NULL
if (!is.null(indPartial)) {
partterm <- attr(Terms, "variables")[1 + indPartial]
Pterm <- sapply(partterm, function(x) deparse(x[[2]], width.cutoff=500))
Pterm <- paste(Pterm, collapse = "+")
P.formula <- as.formula(paste("~", Pterm), env = environment(formula))
zlev <- xlev[names(xlev) %in% Pterm]
zmf <- if (inherits(data, "environment"))
eval(substitute(
model.frame(P.formula, na.action = na.pass, xlev = zlev)),
envir = data, enclos = .GlobalEnv)
else
model.frame(P.formula, data, na.action = na.pass, xlev = zlev)
partterm <- sapply(partterm, function(x) deparse(x, width.cutoff=500))
formula <- update(formula, paste("~.-", paste(partterm,
collapse = "-")))
flapart <- update(formula, paste(" ~ . +", Pterm))
}
if (formula[[2]] == "1" || formula[[2]] == "0")
Y <- NULL
else {
if (exists("Pterm"))
xlev <- xlev[!(names(xlev) %in% Pterm)]
ymf <- if (inherits(data, "environment"))
eval(substitute(
model.frame(formula, na.action = na.pass, xlev = xlev)),
envir=data, enclos=.GlobalEnv)
else
model.frame(formula, data, na.action = na.pass, xlev = xlev)
}
## Combine condition an constrain data frames
if (!is.null(zmf)) {
ncond <- NCOL(zmf)
if (!is.null(ymf))
mf <- cbind(zmf, ymf)
else
mf <- zmf
} else {
ncond <- 0
mf <- ymf
}
## Select a subset of data and species
if (!is.null(subset)) {
subset <- eval(subset,
if (inherits(data, "data.frame")) cbind(data, X)
else as.data.frame(X),
parent.frame(2))
X <- X[subset, , drop = FALSE]
if (NROW(mf) > 0)
mf <- mf[subset, , drop = FALSE]
}
## Get na.action attribute, remove NA and drop unused levels
if (NROW(mf) > 0) {
mf <- model.frame(formula(mf), mf, xlev = xlev,
na.action = na.action, drop.unused.levels = TRUE)
nas <- attr(mf, "na.action")
## Check if there are one-level factors after subset and na.action
for (i in 1:ncol(mf))
if (is.factor(mf[[i]]) && length(levels(mf[[i]])) <= 1)
levels(mf[[i]]) <- c(levels(mf[[i]]), ".ThisVarHasOnly1Level")
} else {
nas <- NULL
}
## Check and remove NA in dependent data
if (!is.null(nas)) {
excluded <- X[nas, , drop = FALSE]
X <- X[-nas,, drop=FALSE]
} else {
excluded <- NULL
}
if (ncond > 0) {
Z <- model.matrix(P.formula, mf)
if (any(colnames(Z) == "(Intercept)"))
Z <- Z[, -which(colnames(Z) == "(Intercept)"), drop = FALSE]
}
if (NROW(mf) > 0) {
Y <- model.matrix(formula, mf)
if (any(colnames(Y) == "(Intercept)"))
Y <- Y[, -which(colnames(Y) == "(Intercept)"), drop = FALSE]
if (NCOL(Y) == 0)
Y <- NULL
}
X <- as.matrix(X)
rownames(X) <- rownames(X, do.NULL = FALSE)
colnames(X) <- colnames(X, do.NULL = FALSE)
if (!is.null(Y)) {
rownames(Y) <- rownames(Y, do.NULL = FALSE)
colnames(Y) <- colnames(Y, do.NULL = FALSE)
}
if (!is.null(Z)) {
rownames(Z) <- rownames(Z, do.NULL = FALSE)
colnames(Z) <- colnames(Z, do.NULL = FALSE)
}
list(X = X, Y = Y, Z = Z, terms = terms(fla, width.cutoff = 500),
terms.expand = terms(flapart, width.cutoff = 500), modelframe = mf,
subset = subset, na.action = nas, excluded = excluded)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.