Description Usage Arguments Value Author(s) See Also Examples
Creates a plot with gene counts, bin counts, PSI/PIR value, inclusion and exclusion junctions for selected bins and conditions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | plotBins( counts,
as,
bin,
factorsAndValues,
targets,
main = NULL,
colors = c( '#2F7955', '#79552F', '#465579',
'#A04935', '#752020', '#A07C35') ,
panelTitleColors = '#000000',
panelTitleCex = 1,
innerMargins = c( 2.1, 3.1, 1.1, 1.1 ),
outerMargins = c( 0, 0, 2.4, 0 ),
useBarplots = NULL,
barWidth = 0.9,
barSpacer = 0.4,
las.x = 2,
useHCColors = FALSE,
legendAtSide = TRUE,
outfolder = NULL,
outfileType = c( 'png', 'bmp', 'jpeg', 'tiff', 'pdf')[1],
deviceOpt = NULL )
|
counts |
An object of class |
as |
An object of class |
bin |
A character vector with the names of the bins to be plotted. |
factorsAndValues |
A list containing the factor and the values for each
factor to be plotted. The order of the factors will modify how the
conditions are grouped in the plot. |
targets |
A data frame containing sample, bam files and experimental factor columns |
main |
Main title of the plot. If |
colors |
A vector of character colors for lines and bar plots. |
panelTitleColors |
A vector of character colors for the titles of each plot panel. |
panelTitleCex |
Character size expansion for panel titles. |
innerMargins |
A numerical vector of the form c(bottom, left, top, right) which gives the size of each plot panel margins. Defaults to c( 2.1, 3.1, 1.1, 1.1 ) |
outerMargins |
A numerical vector of the form c(bottom, left, top, right) which gives the size of margins. Defaults to c( 0, 0, 2.4, 0 ) |
useBarplots |
A logical value that indicates the type of plot to be
used. If |
barWidth |
The width of the bars in bar plots. |
barSpacer |
Fraction of |
las.x |
Text orientation of x-axis labels. |
useHCColors |
A logical value. If |
are not used, instead panel title are automatically chosen to have high
contrast against colors
.
legendAtSide |
A logical value that forces panel title to be shown on the y-axis, instead of over the plot. |
outfolder |
Path to output folder to write plot images. Is |
outfileType |
File format of the output files used if |
deviceOpt |
A list of named options to be passed to the graphic device
selected in |
Returns a png for each selected bin
Estefania Mancini, Andres Rabinovich, Javier Iserte, Marcelo Yanovsky, Ariel Chernomoretz
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | # Create a transcript DB from gff/gtf annotation file.
# Warnings in this examples can be ignored.
#library(GenomicFeatures)
#genomeTxDb <- makeTxDbFromGFF( system.file('extdata','genes.mini.gtf',
# package="ASpli") )
# Create an ASpliFeatures object from TxDb
#features <- binGenome( genomeTxDb )
# Define bam files, sample names and experimental factors for targets.
#bamFileNames <- c( "A_C_0.bam", "A_C_1.bam", "A_C_2.bam",
# "A_D_0.bam", "A_D_1.bam", "A_D_2.bam",
# "B_C_0.bam", "B_C_1.bam", "B_C_2.bam",
# "B_D_0.bam", "B_D_1.bam", "B_D_2.bam" )
#targets <- data.frame(
# row.names = paste0('Sample_',c(1:12)),
# bam = system.file( 'extdata', bamFileNames, package="ASpli" ),
# factor1 = c( 'A','A','A','A','A','A','B','B','B','B','B','B'),
# factor2 = c( 'C','C','C','D','D','D','C','C','C','D','D','D') )
# Load reads from bam files
#bams <- loadBAM( targets )
# Read counts from bam files
#counts <- readCounts( features, bams, targets, cores = 1, readLength = 100,
# maxISize = 50000 )
# Calculate differential usage of genes, bins and junctions
#du <- DUreport.norm( counts, targets , contrast = c(1,-1,-1,1))
# Calculate PSI / PIR for bins and junction.
#as <- AsDiscover( counts, targets, features, bams, readLength = 100,
# threshold = 5, cores = 1 )
# Plot bin data. Factor2 is the main factor for graphic representation in
# this example as it is the first in factorsAndValues argument.
# This makes a bar plot comparing four conditions, grouped by factor1.
#plotBins( counts, as, 'GENE03:E002',
# factorsAndValues = list(
# factor2 = c('C','D'),
# factor1 = c('A','B') ),
# las.x = 1,
# legendAtSide = TRUE,
# useHCColors = TRUE,
# targets = targets,
# barWidth = 0.95,
# innerMargins = c( 2.1, 4.1, 1.1, 1.1 ) )
# Redefine targets
#targets <- data.frame(
# row.names = paste0('Sample_',c(1:12)),
# bam = system.file( 'extdata', bamFileNames, package="ASpli" ),
# factor1 = c( 'A','A','B','B','C','C','D','D','E','E','F','F') )
#as <- AsDiscover( counts, targets, features, bams, readLength = 100,
# threshold = 5, cores = 1 )
# This makes a line plot for six conditions, grouped by factor1.
#plotBins( counts, as, 'GENE03:E002',
# factorsAndValues = list(
# factor1 = c('A','B','C','D','E','F') ),
# las.x = 1,
# legendAtSide = FALSE,
# targets = targets,
# innerMargins = c( 2.1, 4.1, 1.1, 1.1 ) )
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.