R/COHCAP.avg.by.island.R

Defines functions fastLm_wrapper2 fastLm_wrapper cpp.lm.1var.wrapper cpp.paired.ttest.wrapper cpp.ttest.wrapper cpp.annova.2way.wrapper cpp.ANOVA.1way.wrapper cor.dist count.observed annova.2way.pvalue lm.pvalue2 lm.pvalue anova.pvalue ttest2 custom.cor custom.mean

custom.mean = function(arr)
{
	return(mean(as.numeric(arr), na.rm = T))
}#end def ttest2

custom.cor = function(arr, var1)
{
	if(length(arr[!is.na(arr)]) >= 0.5 * length(arr)){
		return(cor(as.numeric(arr), var1, use="complete.obs"))
	}else{
		return(NA)
	}
}#end def custom.cor

ttest2 = function(arr, grp1, grp2)
{
	group1 = as.numeric(arr[grp1])
	group2 = as.numeric(arr[grp2])
	#print(grp1)
	#print(grp2)
	#stop()
	#require at least 2 replicates
	if((length(group1[!is.na(group1)]) >=2) & (length(group2[!is.na(group2)]) >=2))
	{
		result = t.test(group1, group2)
		if(is.na(result$p.value)){
			return(1)
		}else{
			return(result$p.value)
		}
	}
	else
	{
		return(1)
	}
}#end def ttest2

anova.pvalue = function(arr, grp.levels)
{
	#print(arr)
	#print(grp.levels)
	
	grp.no.na = as.factor(as.character(grp.levels[!is.na(arr)]))
	if(length(levels(grp.no.na)) >= 2)
		{
			test = aov(arr ~ grp.levels) 
			result = summary(test)[[1]][['Pr(>F)']][1]
			if(is.null(result))
				{
					return(1)
				}
			else
				{
					return(result)
				}
		}
	else
		{
			return(1)
		}
}#end def anova.pvalue

lm.pvalue = function(arr, var1)
{
	if(length(arr[!is.na(arr)]) >= 0.5 * length(arr)){
		fit = lm(as.numeric(arr)~var1)
		result = summary(fit)
		pvalue = result$coefficients[2,4]
		return(pvalue)
	}else{
		return(NA)
	}
}#end def lm.pvalue


lm.pvalue2 = function(arr, var1, var2)
{
	if(typeof(var2) == "character"){
		var2 = as.factor(var2)
	} 
	if(length(arr[!is.na(arr)]) >= 0.5 * length(arr)){
		fit = lm(as.numeric(arr)~var1 + as.numeric(var2))
		result = summary(fit)
		pvalue = result$coefficients[2,4]
		return(pvalue)
	}else{
		return(NA)
	}
}#end def lm.pvalue

annova.2way.pvalue = function(arr, grp.levels, pairing.levels)
{
	#print(arr)
	#print(grp.levels)
	#print(pairing.levels)
	
	grp.no.na = as.factor(as.character(grp.levels[!is.na(arr)]))
	
	rep.flag = 1
	if((length(levels(grp.no.na)) >= 2) && (rep.flag == 1))
		{
			test = aov(arr ~ grp.levels + pairing.levels) 
			result = summary(test)[[1]][['Pr(>F)']][1]
			if(is.null(result))
				{
					return(1)
				}
			else
				{
					return(result)
				}
		}
	else
		{
			return(1)
		}
}#end def anova.pvalue

count.observed = function(arr){
	return(length(arr[!is.na(arr)]))
}#end def count.observed

cor.dist = function(mat){
	cor.mat = cor(as.matrix(t(mat)), use="pairwise.complete.obs")
	dis.mat = 1 - cor.mat
	dis.mat[is.na(dis.mat)]=2
	return(as.dist(dis.mat))
}#end def cor.dist

cpp.ANOVA.1way.wrapper = function(arr, grp.levels, ref){
	full_beta = arr[!is.na(arr)]
	betaT = arr[(grp.levels != ref)&!is.na(arr)]
	betaR = arr[(grp.levels == ref)&!is.na(arr)]
	result = .Call('_COHCAP_ANOVA_cpp_2group', PACKAGE = 'COHCAP', full_beta, betaT, betaR)
	return(result)
}#end def cpp.ANOVA.1way.wrapper

cpp.annova.2way.wrapper = function(arr, var1, var2, ref){
	full_beta = arr[!is.na(arr)]
	
	max.df = length(full_beta)-length(levels(as.factor(as.character(var1[!is.na(arr)]))))*length(levels(as.factor(as.character(var2[!is.na(arr)]))))
	
	if(max.df < 1){
		return(NA)
	}else{
		betaT = arr[(var1 != ref)&!is.na(arr)]
		betaR = arr[(var1 == ref)&!is.na(arr)]
		
		interaction.var = paste(var1, var2, sep="-")
		interaction.var = interaction.var[!is.na(arr)]
		
		#Rcpp code uses numeric array
		interaction.var = as.numeric(as.factor(interaction.var))
		if(min(table(interaction.var)) < 2){
			return(NA)
		}else{
			result = .Call('_COHCAP_ANOVA_cpp_2group_2way', PACKAGE = 'COHCAP',full_beta, betaT, betaR, interaction.var)
			return(result)		
		}	
	}#end else
}#end def cpp.annova.2way.wrapper

cpp.ttest.wrapper = function(arr, grp.levels, ref){
	betaT = arr[(grp.levels != ref)&!is.na(arr)]
	betaR = arr[(grp.levels == ref)&!is.na(arr)]
	result = .Call('_COHCAP_ttest_cpp', PACKAGE = 'COHCAP', betaT, betaR)
	return(result)
}#end def cpp.ttest.wrapper

cpp.paired.ttest.wrapper = function(arr, iTrt, iRef){
	pairedT = arr[iTrt]
	pairedR = arr[iRef]
	groupT=pairedT[!is.na(pairedT)&!is.na(pairedR)]
	groupR=pairedR[!is.na(pairedT)&!is.na(pairedR)]
	paired_diff = groupT - groupR
	result = .Call('_COHCAP_ttest_cpp_paired', PACKAGE = 'COHCAP', paired_diff)
	return(result)
}#end def cpp.paired.ttest.wrapper

cpp.lm.1var.wrapper = function(arr, var1){
	full_continuous= var1[!is.na(arr)]
	full_beta= arr[!is.na(arr)]
	result = .Call('_COHCAP_lmResidual_cpp_1var', PACKAGE = 'COHCAP', full_beta, full_continuous)
	return(result)
}#end def cpp.lm.1var.wrapper

fastLm_wrapper = function(arr, var1){
	var1= var1[!is.na(arr)]
	arr= arr[!is.na(arr)]
	fit_stats = fastLmPure(as.matrix(var1), arr)
	t_stat = fit_stats$coefficients / fit_stats$stderr
	return(pt(-abs(t_stat), fit_stats$df.residual))
}#end def fastLm_wrapper

fastLm_wrapper2 = function(arr, independent.mat){
	independent.mat= independent.mat[!is.na(arr),]
	arr= arr[!is.na(arr)]
	fit_stats = fastLmPure(independent.mat, arr)
	t_stat = fit_stats$coefficients[1] / fit_stats$stderr[1]
	return(pt(-abs(t_stat), fit_stats$df.residual))
}#end def fastLm_wrapper2

`COHCAP.avg.by.island` =function (sample.file, site.table, beta.table, project.name,
									project.folder, methyl.cutoff=0.7, unmethyl.cutoff = 0.3,
									delta.beta.cutoff = 0.2, pvalue.cutoff=0.05, fdr.cutoff=0.05,
									num.groups=2, num.sites=4, plot.box=TRUE, plot.heatmap=TRUE,
									paired=FALSE, ref="none",lower.cont.quantile=0, upper.cont.quantile=1,
									max.cluster.dist = NULL, alt.pvalue="none", output.format = "txt",
									gene.centric=TRUE, heatmap.dist.fun="Euclidian")
{
	fixed.color.palatte = c("green","orange","purple","cyan","pink","maroon","yellow","grey","red","blue","black",colors())

	if(heatmap.dist.fun =="Euclidian"){
		heatmap.dist.fun=dist
	}else if(heatmap.dist.fun =="Pearson Dissimilarity"){
		heatmap.dist.fun=cor.dist
	}else{
		stop("'heatmap.dist.fun' must be either 'Euclidian' or 'Pearson Dissimilarity'")
	}
	
	island.folder=file.path(project.folder,"CpG_Island")
	dir.create(island.folder, showWarnings=FALSE)
	
	data.folder=file.path(project.folder,"Raw_Data")
	dir.create(data.folder, showWarnings=FALSE)
	
	print("Reading Sample Description File....")
	sample.table = read.table(sample.file, header=F, sep = "\t", stringsAsFactors=TRUE)
	samples = as.character(sample.table[[1]])
	for (i in 1:length(samples))
		{
			if(length(grep("^[0-9]",samples[i])) > 0)
				{
					samples[i] = paste("X",samples[i],sep="")
				}#end if(length(grep("^[0-9]",samples[i])) > 0)
		}#end def for (i in 1:length(samples))
	sample.group = sample.table[[2]]
	sample.group = as.factor(gsub(" ",".",sample.group))
	pairing.group = NA
	if(paired == "continuous"){
		print("using continuous covariate")
		pairing.group = sample.table[[3]]
		pairing.group = as.numeric(pairing.group)
	}else if(paired){
		print("using pairing ID")
		pairing.group = sample.table[[3]]
		pairing.group = as.factor(gsub(" ",".",pairing.group))
	}
	ref = gsub(" ",".",ref)

	sample.names = names(beta.table)[6:ncol(beta.table)]
	beta.values = beta.table[,6:ncol(beta.table)]
	annotation.names = names(beta.table)[1:5]
	annotations = beta.table[,1:5]
	print(dim(beta.values))

	if(length(samples) != length(sample.names[match(samples, sample.names, nomatch=0)]))
		{
			warning("Some samples in sample description file are not present in the beta file!")
			warning(paste(length(samples),"items in sample description file",sep=" "))
			warning(paste(length(sample.names),"items in gene beta file",sep=" "))
			warning(paste(length(sample.names[match(samples, sample.names, nomatch=0)]),"matching items in gene beta file",sep=" "))
			#warning(sample.names[match(samples, sample.names, nomatch=0)])
			stop()
		}

	if(length(samples)>1)
		{
			beta.values = beta.values[,match(samples, sample.names, nomatch=0)]
			colnames(beta.values)=samples
		}
		
	print(dim(beta.values))
	#print(samples)
	#print(sample.names)
	#print(colnames(beta.values))
	#print(beta.values[1,])
	rm(beta.table)
	
	groups = levels(sample.group)
	print(paste("Group:",groups, sep=" "))

	if((length(groups) != num.groups) & (ref != "continuous"))
		{
			print(paste("Group:",groups, sep=" "))

			warning(paste("There are ",length(groups)," but user specified algorithm for ",num.groups," groups.",sep=""))
			warning("Please restart algorithm and specify the correct number of groups")
			stop()
		}
	
	if (ref == "continuous"){
		print("Continous Variable :")
		print(sample.table[[2]])
	}
	
	print("Checking CpG Site Stats Table")
	print(dim(site.table))
	site.table = site.table[!is.na(site.table[[5]]), ]
	print(dim(site.table))
	
	if(!is.null(max.cluster.dist)){
		if ((num.groups==2)|(ref=="continuous")){
			print("Looking for clusters within provided CpG Island Annotations")
			island.clusters = rep(NA,nrow(site.table))
			
			cpg.islands = levels(as.factor(as.character(site.table[[5]])))

			for (i in 1:length(cpg.islands))
				{
					island = cpg.islands[i]
					cpg.sites = as.character(site.table[site.table[[5]] == island,1])
					ann.mat = site.table[match(cpg.sites, as.character(site.table[,1]),nomatch=0),]
					if(nrow(ann.mat) >= num.sites)
						{
							#print(island)
							ann.mat = ann.mat[order(ann.mat$Loc),]
							probe.pos = ann.mat$Loc
						
							temp.cluster.probes = c(as.character(ann.mat$SiteID[1]))
							temp.region.chr = as.character(ann.mat$Chr[1])
							temp.region.start = ann.mat$Loc[1]
							temp.region.stop = ann.mat$Loc[1]
							temp.delta.beta = ann.mat[1,8]
							temp.site.count = 1

							for (i in 2:length(probe.pos)){
								test.pos = probe.pos[i]
								test.delta.beta = ann.mat[i,8]
								sign.check = FALSE
								if((temp.delta.beta > 0) & (test.delta.beta > 0)){
									sign.check = TRUE
								}else if((temp.delta.beta < 0) & (test.delta.beta < 0)){
									sign.check = TRUE
								}
								
								if(sign.check){
									if(((test.pos - temp.region.stop) <= max.cluster.dist) & (temp.site.count == 1)){
										#start cluster
										temp.region.stop = test.pos				
										temp.site.count = 2
										temp.cluster.probes = c(temp.cluster.probes, as.character(ann.mat$SiteID[i]))
									}else if (temp.site.count > 1){
										if((test.pos - temp.region.stop) <= max.cluster.dist){
											#expand region
											temp.region.stop = test.pos	
											temp.site.count = temp.site.count + 1
											temp.cluster.probes = c(temp.cluster.probes, as.character(ann.mat$SiteID[i]))
										} else {
											#define stop
											if(temp.site.count >= num.sites){
												cluster.chr = paste("chr",temp.region.chr,sep="")
												cluster.start = temp.region.start
												cluster.stop = temp.region.stop
												
												new.island = paste(cluster.chr,":",cluster.start,"-",cluster.stop,sep="")
												island.clusters[match(temp.cluster.probes,as.character(site.table$SiteID), nomatch=0)]=new.island
											}#end if(temp.site.count >= num.sites)

											temp.cluster.probes = c(as.character(ann.mat$SiteID[i]))
											temp.region.chr = as.character(ann.mat$Chr[i])
											temp.region.start = ann.mat$Loc[i]
											temp.region.stop = ann.mat$Loc[i]
											temp.site.count = 1
										}#end else
									}else{
										#reset
										temp.cluster.probes = c(as.character(ann.mat$SiteID[i]))
										temp.region.chr = as.character(ann.mat$Chr[i])
										temp.region.start = ann.mat$Loc[i]
										temp.region.stop = ann.mat$Loc[i]
										temp.site.count = 1					
									}#end else
								}else{
									#reset
									if (temp.site.count >= num.sites){
										cluster.chr = paste("chr",temp.region.chr,sep="")
										cluster.start = temp.region.start
										cluster.stop = temp.region.stop
														
										new.island = paste(cluster.chr,":",cluster.start,"-",cluster.stop,sep="")
										island.clusters[match(temp.cluster.probes,as.character(site.table$SiteID), nomatch=0)]=new.island
									}#end if (temp.site.count >= num.sites)
									
									temp.cluster.probes = c(as.character(ann.mat$SiteID[i]))
									temp.region.chr = as.character(ann.mat$Chr[i])
									temp.region.start = ann.mat$Loc[i]
									temp.region.stop = ann.mat$Loc[i]
									temp.site.count = 1	
								}#end else
								
								temp.delta.beta = ann.mat[i,8]
							}#end for (i in 2:length(test.pos))

							if (temp.site.count >= num.sites){
								cluster.chr = paste("chr",temp.region.chr,sep="")
								cluster.start = temp.region.start
								cluster.stop =  temp.region.stop
												
								new.island = paste(cluster.chr,":",cluster.start,"-",cluster.stop,sep="")
								island.clusters[match(temp.cluster.probes,as.character(site.table$SiteID), nomatch=0)]=new.island
							}#end if (temp.hits > 1)
						}#end if(nrow(data.mat) >= num.sites)
				}#end for (i in 1:length(cpg.islands))
			#print(island.clusters)
			
			mapping.table = data.frame(SiteID = as.character(site.table$SiteID), Chr =as.character(site.table$Chr),
											Loc=as.character(site.table$Loc), updated.island=island.clusters)
			if(output.format == 'xls'){
				xlsfile = file.path(data.folder, paste(project.name,"_DeNovo_Site_to_Island_Mapping-Avg_by_Island.xlsx",sep=""))
				WriteXLS("mapping.table", ExcelFileName = xlsfile)
			} else if(output.format == 'csv'){
				txtfile = file.path(data.folder, paste(project.name,"_DeNovo_Site_to_Island_Mapping-Avg_by_Island.csv",sep=""))
				write.table(mapping.table, file=txtfile, quote=F, row.names=F, sep=",")
			} else if(output.format == 'txt'){
				txtfile = file.path(data.folder, paste(project.name,"_DeNovo_Site_to_Island_Mapping-Avg_by_Island.txt",sep=""))
				write.table(mapping.table, file=txtfile, quote=F, row.names=F, sep="\t")
			} else {
				warning(paste(output.format," is not a valid output format!  Please use 'txt' or 'xls'.",sep=""))
			}
			rm(mapping.table)
			
			site.table[,5] = island.clusters
			site.table = site.table[!is.na(site.table[[5]]), ]
		} else{
			print("Can only define clusters with 2-group (or continuous) comparison.  Sorry.")
		}
	}#revise island annotations
	
	cpg.islands = levels(as.factor(as.character(site.table[[5]])))
	print(length(cpg.islands))
	sites.per.island = tapply(as.character(site.table$SiteID),as.character(site.table[[5]]),length)

	genes = array(dim=length(cpg.islands))
	island.values= matrix(nrow=length(cpg.islands), ncol=ncol(beta.values))
	colnames(island.values) = samples

	#average CpG sites per CpG Island
	print("Average CpG Sites per CpG Island")
	for (i in 1:length(cpg.islands))
		{
			island = cpg.islands[i]
			#print(island)
			cpg.sites = site.table[site.table[[5]] == island,1]
			#print(cpg.sites)
			data.mat = beta.values[match(cpg.sites, annotations[[1]],nomatch=0),]
			#print(data.mat)
			if(nrow(data.mat) >= num.sites)
				{
					info.mat = site.table[site.table[5] == island,]
					genes[i] = NA
					if(length(levels(as.factor(as.character(info.mat[[4]])))) == 1)
						{
							genes[i] = as.character(info.mat[1,4])
						}
					island.values[i,]=apply(data.mat,2,mean, na.rm=T)
				}#end if(nrow(data.mat) >= num.sites)
		}#end for (i in 1:length(cpg.islands))
	island.avg.table = data.frame(island=cpg.islands, gene=genes, island.values)
	if(gene.centric)
		{
			island.avg.table = island.avg.table[!is.na(island.avg.table[[2]]), ]
		}
	annotations = island.avg.table[,1:2]
	annotation.names = c("island","gene")
	beta.values = island.avg.table[,3:ncol(island.avg.table)]
	#print(beta.values)
	
	rm(site.table)
	rm(cpg.islands)
	rm(genes)
	rm(island.values)

	#CpG Island statistical analysis
	island.table = annotations 
	rm(annotations)
	
	if(ref == "continuous"){
			continous.var = sample.table[[2]]
			if ((paired == TRUE) | (paired == "continuous")){
				if(alt.pvalue == "RcppArmadillo.fastLmPure"){
					print("Using fastLm and pt() instead of lm(), with 2nd variable")
					independent.mat = cbind(continous.var, pairing.group)
					lm.pvalue = apply(beta.values, 1, fastLm_wrapper2, independent.mat)
				}else{		
					lm.pvalue = apply(beta.values, 1, lm.pvalue2, continous.var, pairing.group)
				}
			} else{
				if(alt.pvalue == "cppLmResidual.1var"){
					print("Using Rcpp residual t-test instead of lm()")
					lm.pvalue = apply(beta.values, 1, cpp.lm.1var.wrapper, continous.var)
				}else if(alt.pvalue == "RcppArmadillo.fastLmPure"){
					print("Using fastLm and pt() instead of lm()")
					lm.pvalue = apply(beta.values, 1, fastLm_wrapper, continous.var)
				}else{
					lm.pvalue = apply(beta.values, 1, lm.pvalue, continous.var)
				}
			}
			lm.fdr = p.adjust(lm.pvalue, "fdr")
			beta.cor = apply(beta.values, 1, custom.cor, var1=continous.var)
			#upper.beta is max if positive correlation, min if negative correlation
			#lower.beta is min if positive correlation, max if negative correlation
			#in both cases, delta.beta is upper.beta - lower.beta
			beta.min= apply(beta.values, 1, quantile, na.rm=TRUE, probs=c(lower.cont.quantile))
			beta.max= apply(beta.values, 1, quantile, na.rm=TRUE, probs=c(upper.cont.quantile))
			
			upper.beta = beta.max
			upper.beta[beta.cor < 0] = beta.min[beta.cor < 0]
			lower.beta = beta.min
			lower.beta[beta.cor < 0] = beta.max[beta.cor < 0]
			
			rm(beta.min)
			rm(beta.max)
			
			delta.beta = upper.beta - lower.beta

			#make format compatible with 2-group code
			island.table = data.frame(island.table, upper.beta = upper.beta, lower.beta = lower.beta,
									delta.beta = delta.beta, island.pvalue = lm.pvalue, island.fdr = lm.fdr,
									cor.coef = beta.cor)
	} else if(length(groups) == 1) {
	col.names = c(annotation.names)
	print("Averaging Beta Values for All Samples")

	if(length(sample.names) > 1)
		{
			avg.beta = apply(beta.values, 1, mean, na.rm = T)
		}
	else
		{
			avg.beta= beta.values
		}
	island.table = data.frame(island.table, avg.beta=avg.beta)
	} else if(length(groups) == 2) {
	print("Differential Methylation Stats for 2 Groups with Reference")
	trt = groups[groups != ref]
	#print(ref)
	#print(trt)
	#print(samples)
	#print(sample.group)
	trt.samples = samples[which(sample.group == trt)]
	#print(trt.samples)
	ref.samples = samples[which(sample.group == ref)]
	#print(ref.samples)

	all.indices = 1:length(sample.names)
	trt.indices = all.indices[which(sample.group == trt)]
	#print(trt.indices)
	ref.indices = all.indices[which(sample.group == ref)]
	#print(ref.indices)

	trt.beta.values = beta.values[, trt.indices]
	ref.beta.values = beta.values[, ref.indices]

	if(length(trt.indices) > 1)
		{
			trt.avg.beta = apply(trt.beta.values, 1, mean, na.rm = T)
		}
	else
		{
			trt.avg.beta = trt.beta.values
		}
		
	if(length(ref.indices) > 1)
		{
			ref.avg.beta = apply(ref.beta.values, 1, mean, na.rm = T)
		}
	else
		{
			ref.avg.beta= ref.beta.values
		}


	delta.beta = trt.avg.beta - ref.avg.beta

	if(paired == "continuous"){
		print("Analysis of two numeric variables")
		beta.pvalue = unlist(apply(beta.values, 1, annova.2way.pvalue, grp.levels=as.numeric(sample.group), pairing.levels=pairing.group))
	}else if(paired){
		print("Factor in Paired Samples")
		if (alt.pvalue == "cppPairedTtest"){
			print("Using Rcpp/Boost Paired t-test instead of 2-way ANOVA")
			pair.table = table(sample.table[,2], sample.table[,3])
			
			pairIDs=colnames(pair.table)[(as.numeric(pair.table[1,]) == 1)&(as.numeric(pair.table[2,]) == 1)]
			if(length(pairIDs) != length(levels(as.factor(pairing.group)))){
				print("Only pairings with 2 samples are used:")
				print("While incomplete pairs will be removed for missing values,")
				print("please only provide a sample description table with pairs that you would like to compare.")
				stop()
			}#end if(length(pair.table) != length(levels(as.factor(pairing.group)))

			pairedT = c()
			pairedR = c()
			for(i in 1:length(pairIDs)){
				pairID = pairIDs[i]
				pairedT[i] = samples[(pairing.group == pairID)&(sample.group != ref)]
				pairedR[i] = samples[(pairing.group == pairID)&(sample.group == ref)]
			}#end for(pairID in names(pair.table))
			pairTi = match(pairedT, samples)
			pairRi = match(pairedR, samples)
			beta.pvalue = apply(beta.values, 1, anova.pvalue, grp.levels=sample.group)
		}else if(alt.pvalue == "cppANOVA.2way"){
			print("Using Rcpp/Boost 2-way ANOVA")
			max.df = length(samples)-length(levels(as.factor(sample.group)))*length(levels(as.factor(pairing.group)))
			if(max.df < 1){
				print("Not enough degrees of freedom for this implementation.  Consider using 'alt.pvalue' = 'cppPairedTtest'")
				stop()
			}
			beta.pvalue = unlist(apply(beta.values, 1, cpp.annova.2way.wrapper, sample.group, pairing.group, ref))
		}else{
			beta.pvalue = unlist(apply(beta.values, 1, annova.2way.pvalue, grp.levels=sample.group, pairing.levels=pairing.group))
		}
	}else{
		if (alt.pvalue == "rANOVA.1way"){
			print("Using R-based ANOVA instead of t-test")
			beta.pvalue = apply(beta.values, 1, anova.pvalue, grp.levels=sample.group)
		}else if (alt.pvalue == "cppANOVA.1way"){
			print("Using Rcpp/Boost ANOVA instead of t-test")
			beta.pvalue = apply(beta.values, 1, cpp.ANOVA.1way.wrapper, grp.levels=sample.group, ref=ref)
		}else if (alt.pvalue == "cppWelshTtest"){
			print("Using Rcpp/Boost Welsh t-test instead of t.test()")
			beta.pvalue = apply(beta.values, 1, cpp.ttest.wrapper, grp.levels=sample.group, ref=ref)
		}else{
			beta.pvalue = apply(beta.values, 1, ttest2, grp1=trt.indices, grp2=ref.indices)
		}
	}#end else

	beta.fdr = p.adjust(beta.pvalue, method="fdr")

	#print(dim(island.table))
	#print(length(trt.avg.beta))
	#print(length(ref.avg.beta))
	#print(length(delta.beta))
	#print(length(beta.pvalue))
	#print(length(beta.fdr))

	island.table = data.frame(island.table, trt.beta = trt.avg.beta, ref.beta = ref.avg.beta, delta.beta = delta.beta, pvalue = beta.pvalue, fdr = beta.fdr)
	colnames(island.table) = c(annotation.names,
								paste(trt,"avg.beta",sep="."),
								paste(ref,"avg.beta",sep="."),
								paste(trt,"vs",ref,"delta.beta",sep="."),
								"island.pvalue",
								"island.fdr")
	} else if(length(groups) > 2) {
	print("Calculating Average Beta and ANOVA p-values")
	col.names = c(annotation.names)

	for (i in 1:length(groups))
	{
		temp.grp = groups[i]
		all.indices = 1:length(sample.names)
		grp.indices = all.indices[which(sample.group == temp.grp)]
		grp.beta = beta.values[,which(sample.group == temp.grp)]
		if(length(grp.indices) > 1)
			{
				avg.beta = apply(grp.beta, 1, mean, na.rm = T)
			}
		else
			{
				avg.beta= grp.beta
			}
		col.names = c(col.names, paste(temp.grp,"avg.beta",sep="."))
		island.table = data.frame(island.table, avg.beta=avg.beta)
		colnames(island.table) = col.names
	}#end for (i in 1:length(groups)

	if(paired == "continuous"){
		print("Analysis of two numeric variables")
		beta.pvalue = unlist(apply(beta.values, 1, annova.2way.pvalue, grp.levels=as.numeric(sample.group), pairing.levels=pairing.group))
	}else if(paired){
		print("Factor in Paired Samples")
		beta.pvalue = unlist(apply(beta.values, 1, annova.2way.pvalue, grp.levels=sample.group, pairing.levels=pairing.group))
	}else{
		pvalue = apply(beta.values, 1, anova.pvalue, grp.levels = sample.group)
	}#end else

	anova.fdr = p.adjust(pvalue, method="fdr")
	col.names = c(col.names, "island.pvalue", "island.fdr")
	island.table = data.frame(island.table, anova.pvalue = pvalue, anova.fdr = anova.fdr)
	colnames(island.table) = col.names
	} else {
	warning("Invalid groups specified in sample description file!")
	}
	
	island.table = data.frame(island.table, num.sites = sites.per.island[match(as.character(island.table$island),names(sites.per.island))])
	if(output.format == 'xls'){
		xlsfile = file.path(data.folder, paste(project.name,"_CpG_island_stats-Avg_by_Island.xlsx",sep=""))
		WriteXLS("island.table", ExcelFileName = xlsfile)
	} else if(output.format == 'csv'){
		txtfile = file.path(data.folder, paste(project.name,"_CpG_island_stats-Avg_by_Island.csv",sep=""))
		write.table(island.table, file=txtfile, quote=F, row.names=F, sep=",")
	} else if(output.format == 'txt'){
		txtfile = file.path(data.folder, paste(project.name,"_CpG_island_stats-Avg_by_Island.txt",sep=""))
		write.table(island.table, file=txtfile, quote=F, row.names=F, sep="\t")
	} else {
		warning(paste(output.format," is not a valid output format!  Please use 'txt' or 'xls'.",sep=""))
	}
	
	#filter CpG islands
	print(dim(island.table))
	filter.table = island.table
	if((length(groups) == 2)|(ref == "continuous")){
		temp.trt.beta = island.table[[3]]
		temp.ref.beta = island.table[[4]]
		temp.delta.beta = abs(island.table[[5]])
		temp.pvalue = island.table[[6]]
		temp.fdr = island.table[[7]]
		
		if(unmethyl.cutoff > methyl.cutoff)
			{
				print("unmethyl.cutoff > methyl.cutoff ...")
				print("so, delta-beta decides which group should be subject to which cutoff")
				temp.delta.beta = island.table[[5]]
				temp.methyl.up = filter.table[(temp.trt.beta >= methyl.cutoff) & (temp.ref.beta<=unmethyl.cutoff) & !is.na(temp.pvalue) & (temp.pvalue <= pvalue.cutoff) & (temp.fdr <= fdr.cutoff) & (temp.delta.beta >= delta.beta.cutoff),]
				temp.methyl.down = filter.table[(temp.ref.beta >= methyl.cutoff) & (temp.trt.beta<=unmethyl.cutoff) & !is.na(temp.pvalue) & (temp.pvalue <= pvalue.cutoff) & (temp.fdr <= fdr.cutoff) & (temp.delta.beta <= -delta.beta.cutoff),]
				filter.table = rbind(temp.methyl.up, temp.methyl.down)	}
		else
			{
				temp.methyl.up = filter.table[(temp.trt.beta >= methyl.cutoff) & (temp.ref.beta<=unmethyl.cutoff) & !is.na(temp.pvalue) & (temp.pvalue <= pvalue.cutoff) & (temp.fdr <= fdr.cutoff) & (temp.delta.beta >= delta.beta.cutoff),]
				temp.methyl.down = filter.table[(temp.ref.beta >= methyl.cutoff) & (temp.trt.beta<=unmethyl.cutoff) & !is.na(temp.pvalue) & (temp.pvalue <= pvalue.cutoff) & (temp.fdr <= fdr.cutoff) & (temp.delta.beta >= delta.beta.cutoff),]
				filter.table = rbind(temp.methyl.up, temp.methyl.down)
			}
	} else if(length(groups) == 1) {
		temp.avg.beta = island.table$avg.beta
		filter.table = filter.table[(temp.avg.beta >= methyl.cutoff) | (temp.avg.beta <=unmethyl.cutoff),]
	} else if(length(groups) > 2) {
		temp.pvalue = island.table[[ncol(island.table) -1]]
		temp.fdr = island.table[[ncol(island.table)]]
		filter.table = filter.table[(temp.pvalue <= pvalue.cutoff) & (temp.fdr <= fdr.cutoff),]
	} else {
	warning("Invalid groups specified in sample description file!")
	}
	print(dim(filter.table))
	
	sig.islands = filter.table[[1]]
	print(paste("There are ",length(sig.islands)," differentially methylated islands",sep=""))
	
	if(output.format == 'xls'){
		xlsfile = file.path(island.folder, paste(project.name,"_CpG_island_filtered-Avg_by_Island.xlsx",sep=""))
		WriteXLS("filter.table", ExcelFileName = xlsfile)
	} else if(output.format == 'csv'){
		txtfile = file.path(island.folder, paste(project.name,"_CpG_island_filtered-Avg_by_Island.csv",sep=""))
		write.table(filter.table, file=txtfile, quote=F, row.names=F, sep=",")
	} else if(output.format == 'txt'){
		txtfile = file.path(island.folder, paste(project.name,"_CpG_island_filtered-Avg_by_Island.txt",sep=""))
		write.table(filter.table, file=txtfile, quote=F, row.names=F, sep="\t")
	} else {
		warning(paste(output.format," is not a valid output format!  Please use 'txt' or 'xls'.",sep=""))
	}
	
	print(dim(island.avg.table))
	island.avg.table = island.avg.table[match(sig.islands,island.avg.table[[1]],nomatch=0),]
	print(dim(island.avg.table))


	if(output.format == 'xls'){
		xlsfile = file.path(data.folder, paste(project.name,"_CpG_island_filtered_beta_values-Avg_by_Island.xlsx",sep=""))
		WriteXLS("island.avg.table", ExcelFileName = xlsfile)
	} else if(output.format == 'csv'){
		txtfile = file.path(data.folder, paste(project.name,"_CpG_island_filtered_beta_values-Avg_by_Island.csv",sep=""))
		write.table(island.avg.table, file=txtfile, quote=F, row.names=F, sep=",")
	} else if(output.format == 'txt'){
		txtfile = file.path(data.folder, paste(project.name,"_CpG_island_filtered_beta_values-Avg_by_Island.txt",sep=""))
		write.table(island.avg.table, file=txtfile, quote=F, row.names=F, sep="\t")
	} else {
		warning(paste(output.format," is not a valid output format!  Please use 'txt' or 'xls'.",sep=""))
	}
	
if((plot.box) & (nrow(island.avg.table) > 0))
	{
		#better to provide values between 0 and 1, but just in case user provided percent methylation values
		plot.max = 1
		if(max(island.avg.table[,3:ncol(island.avg.table)],na.rm=T) > 10){
			plot.max = 100
		}
		if (ref == "continuous"){
			print("Plotting Significant Islands for Continuous Variable..")
			continous.var = sample.table[[2]]
			
			plot.folder=file.path(island.folder,paste(project.name,"_Line_Plots",sep=""))
			dir.create(plot.folder, showWarnings=FALSE)
			
			for (i in 1:length(sig.islands))
				{
					island = as.character(island.avg.table[i,1])
					gene = as.character(island.avg.table[i,2])
					
					gene = gsub(";","_",gene)
					
					island = gsub(":","_",island)
					island = gsub("-","_",island)
					plot.file = file.path(plot.folder, paste(gene,"_",island,".pdf", sep=""))
					methyl.level = as.numeric(island.avg.table[i,3:ncol(island.avg.table)])
					
					pdf(file=plot.file)
					plot(continous.var, methyl.level, pch=16, col="black", ylim=c(0,plot.max),
						main=paste(gene,sep=""), ylab="Methylation (Beta)", xlab="")
					abline(lm(methyl.level~continous.var),lwd=2, col="red")
					dev.off()
				}#end for (1 in 1:length(sig.islands))
		}else{
			print("Plotting Significant Islands Box-Plots..")
			plot.folder=file.path(island.folder,paste(project.name,"_Box_Plots",sep=""))
			dir.create(plot.folder, showWarnings=FALSE)
					
			labelColors = fixed.color.palatte[1:length(groups)]
			
			#print(samples)
			#print(sample.names)
			
			for (i in 1:length(sig.islands))
				{
					island = as.character(island.avg.table[i,1])
					gene = as.character(island.avg.table[i,2])
					
					gene = gsub(";","_",gene)
					
					island = gsub(":","_",island)
					island = gsub("-","_",island)
					plot.file = file.path(plot.folder, paste(gene,"_",island,".pdf", sep=""))
					data = t(island.avg.table[i,3:ncol(island.avg.table)])
					
					pdf(file=plot.file)
					plot(sample.group, data, pch=20, col=labelColors, ylim=c(0,plot.max),
						main=paste(gene,sep=""), ylab="Methylation (Beta)")
					dev.off()
				}#end for (1 in 1:length(sig.islands))
		}#end else
	}#end if((plot.box) & (nrow(island.avg.table) > 0))
	
	integrate.tables = list(beta.table=island.avg.table, filtered.island.stats=filter.table)

if((plot.heatmap)& (nrow(island.avg.table) > 1)& (nrow(island.avg.table) < 10000)){
	temp.beta.mat = apply(island.avg.table[,3:ncol(island.avg.table)], 1, as.numeric)

	if(length(sig.islands) < 25){
		colnames(temp.beta.mat) = sig.islands
	} else {
		colnames(temp.beta.mat) = rep("", length(sig.islands))
	}
	rownames(temp.beta.mat) = samples
	
	labelColors = rep("black",times=nrow(temp.beta.mat))
	if(ref == "continuous"){
		continuous.color.breaks = 10	
		plot.var = as.numeric(continous.var)
		plot.var.min = min(plot.var, na.rm=T)
		plot.var.max = max(plot.var, na.rm=T)
		
		plot.var.range = plot.var.max - plot.var.min
		plot.var.interval = plot.var.range / continuous.color.breaks
		
		color.range = colorRampPalette(c("green","black","orange"))(n = continuous.color.breaks)
		plot.var.breaks = plot.var.min + plot.var.interval*(0:continuous.color.breaks)
		for (j in 1:continuous.color.breaks){
			labelColors[(plot.var >= plot.var.breaks[j]) &(plot.var <= plot.var.breaks[j+1])] = color.range[j]
		}#end for (j in 1:continuous.color.breaks)
	}else{
		color.palette = fixed.color.palatte[1:length(groups)]
		for (j in 1:length(groups)){
			labelColors[sample.group == as.character(groups[j])] = color.palette[j]
		}#end for (j in 1:length(groups))
	}

	beta.breaks = c(0:40*2.5)
	if(max(temp.beta.mat, na.rm=T) < 2){
		beta.breaks = beta.breaks / 100
	}else{
		print("Adjusting heatmap scale, assuming percent methylation between 0 and 100")
	}
	
	heatmap.file = file.path(island.folder, paste(project.name,"_CpG_island_heatmap-Avg_by_Island.pdf",sep=""))
	pdf(file = heatmap.file)
	heatmap.2(temp.beta.mat,
				col=colorpanel(40, low="blue", mid="black", high="red"), breaks=beta.breaks,
				density.info="none", key=TRUE, distfun = heatmap.dist.fun,
				 RowSideColors=labelColors, trace="none", margins = c(15,15), cexCol=0.8, cexRow=0.8)
	if(ref == "continuous"){
		legend("topright",legend=c(round(plot.var.max,digits=1),rep("",length(color.range)-2),round(plot.var.min,digits=1)),
				col=rev(color.range), pch=15, y.intersp = 0.4, cex=0.8, pt.cex=1.5)
	}else{
		legend("topright",legend=groups,col=color.palette,  pch=15)
	}
	dev.off()
}#end if((plot.heatmap)& (nrow(island.avg.table) > 0))
	return(integrate.tables)
}#end def COHCAP.avg.by.island

Try the COHCAP package in your browser

Any scripts or data that you put into this service are public.

COHCAP documentation built on Nov. 8, 2020, 8:07 p.m.