Nothing
colLab <- function(n, labelColors, clusMember) {
if(is.leaf(n)) {
a <- attributes(n)
#print(a)
# clusMember - vector of sample names (ordered to match label color.palette)
# labelColors - a vector of color.palette for the above grouping
labCol <- labelColors[clusMember == a$label]
#print(labCol)
attr(n, "nodePar") <- c(a$nodePar, lab.col = labCol)
}
n
}
`COHCAP.qc` <-function (sample.file, beta.table, project.name, project.folder, plot.legend=TRUE, color.palette = c("red","blue","green","orange","purple","cyan","pink","maroon","yellow","grey","black",colors()))
{
qc.folder<-file.path(project.folder,"QC")
dir.create(qc.folder, showWarnings=FALSE)
sample.table <- read.table(sample.file, header=F, sep = "\t", stringsAsFactors=TRUE)
samples <- as.character(sample.table[[1]])
for (i in 1:length(samples))
{
if(length(grep("^[0-9]",samples[i])) > 0)
{
samples[i] <- paste("X",samples[i],sep="")
}#end if(length(grep("^[0-9]",samples[i])) > 0)
}#end def for (i in 1:length(samples))
sample.group <- sample.table[[2]]
sample.names <- names(beta.table)[6:ncol(beta.table)]
beta.values <- beta.table[,6:ncol(beta.table)]
print(dim(beta.values))
methyl.max <- ceiling(max(beta.values))
methyl.min <- ceiling(min(beta.values))
#print(samples)
#print(sample.names)
if(length(samples) != length(sample.names[match(samples, sample.names, nomatch=0)]))
{
warning("Some samples in sample description file are not present in the beta file!")
warning(paste(length(samples),"items in sample description file",sep=" "))
warning(paste(length(sample.names),"items in gene beta file",sep=" "))
warning(paste(length(sample.names[match(samples, sample.names, nomatch=0)]),"matching items in gene beta file",sep=" "))
#warning(sample.names[match(samples, sample.names, nomatch=0)])
stop()
}
if(length(samples)>1)
{
beta.values <- beta.values[,match(samples, sample.names, nomatch=0)]
colnames(beta.values)=samples
}
print(dim(beta.values))
#print(samples)
#print(sample.names)
#print(colnames(beta.values))
#print(beta.values[1,])
rm(beta.table)
groups <- levels(sample.group)
print(paste("Group: ",groups,sep=""))
color.palette <- color.palette[1:length(groups)]
print(paste("Color: ",color.palette[1:length(groups)], sep=""))
#sample histogram
print("Calculating Sample Statistics...")
q0 <- array(dim=length(samples))
q25 <- array(dim=length(samples))
q50 <- array(dim=length(samples))
q75 <- array(dim=length(samples))
q100 <- array(dim=length(samples))
print("Creating Sample Histogram...")
hist.file <- file.path(qc.folder, paste(project.name,"_hist.pdf",sep=""))
pdf(file = hist.file)
#print(samples)
#print(length(samples))
for (i in 1:length(samples))
{
#print(i)
#print(paste("Working on Density Distribution for ",samples[i],sep=""))
data <- -1
if(length(samples)>1)
{
data <- as.numeric(t(beta.values[i]))
}
else
{
data <- as.numeric(beta.values)
}
#print(dim(data))
quant <- quantile(data, na.rm=T)
q0[i] <- quant[1]
q25[i] <- quant[2]
q50[i] <- quant[3]
q75[i] <- quant[4]
q100[i] <- quant[5]
col <- "black"
if(typeof(sample.group) != "double")
{
expression.group <- sample.group[i]
#print(expression.group)
for (j in 1:length(groups))
{
if(expression.group == groups[j])
{
col = color.palette[j]
}
}
}#end if(typeof(sample.group) != "double")
if(i == 1)
{
den <- density(data, na.rm=T)
expr <- den$x
freq <- den$y
plot(expr, freq, type="l", xlab = "Beta / Percentage Methylation", ylab = "Density", ylim=c(0,8), col=col)
if(plot.legend)
{
legend("topright",legend=groups,col=color.palette, lwd=3)
}
}#end if(i == 1)
else
{
den <- density(data, na.rm=T)
expr <- den$x
freq <- den$y
lines(expr, freq, type = "l", col=col)
}#end else
}#end for (i in 1:length(bed.indices))
dev.off()
#print(samples)
#print(q50)
hist.table <- data.frame(sample = samples, min=q0, bottom25=q25, median=q50, top25=q75, max=q100)
hist.text.file <- file.path(qc.folder,paste(project.name,"_descriptive_statistics.txt",sep=""))
write.table(hist.table, hist.text.file, quote=F, row.names=F, sep="\t")
rm(hist.table)
if(length(samples) > 1)
{
dist1 <- dist(as.matrix(t(beta.values)))
clusMember <- sample.group
labelColors <- as.character(clusMember)
for (i in 1:length(groups))
{
labelColors[clusMember == groups[i]] = color.palette[i]
}
hc <- hclust(dist1)
rm(dist1)
dend1 <- as.dendrogram(hc)
rm(hc)
cluster.file <- file.path(qc.folder,paste(project.name,"_cluster.pdf",sep=""))
print("Creating Dendrogram...")
pdf(file = cluster.file)
#print(labelColors)
#print(clusMember)
dend1 <- dendrapply(dend1, colLab, labelColors=labelColors, clusMember=samples)
a <- attributes(dend1)
attr(dend1, "nodePar") <- c(a$nodePar, lab.col = labelColors)
op <- par(mar = par("mar") + c(0,0,0,10))
plot(dend1, horiz=T)
par(op)
dev.off()
rm(dend1)
#PCA
print("Creating PCA Plot...")
#print(dim(beta.values))
#print(dim(na.omit(data.matrix(beta.values))))
#print(data.matrix(beta.values)[1,])
#print(na.omit(data.matrix(beta.values)[1,]))
pca.values <- prcomp(na.omit(data.matrix(beta.values)))
#print(attributes(pca.values))
#print(pca.values$rotation)
pc.values <- data.frame(pca.values$rotation)
variance.explained <- (pca.values $sdev)^2 / sum(pca.values $sdev^2)
pca.table <- data.frame(PC = 1:length(variance.explained), percent.variation = variance.explained, t(pc.values))
pca.text.file <- file.path(qc.folder,paste(project.name,"_pca.txt",sep=""))
write.table(pca.table, pca.text.file, quote=F, row.names=F, sep="\t")
pca.file <- file.path(qc.folder,paste(project.name,"_pca.pdf",sep=""))
pdf(file=pca.file)
plot(pc.values$PC1, pc.values$PC2, col = labelColors, xlab = paste("PC1 (",round(100* variance.explained[1] , digits = 2),"%)", sep = ""),ylab = paste("PC2 (",round(100* variance.explained[2] , digits = 2),"%)", sep = ""), pch=19)
if(plot.legend)
{
legend("topright",legend=groups,col=color.palette, pch=19)
}
dev.off()
}#end
}#end def RNA.qc
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.