Description Usage Arguments Value Examples
View source: R/neighbor_voting.R
The function performs gene function prediction based on 'guilt by association' using cross validation ([1]). Performance and significance are evaluated by calculating the AUROC or AUPRC of each functional group.
1 2 3 4 5 6 7 | neighbor_voting(
genes.labels,
network,
nFold = 3,
output = "AUROC",
FLAG_DRAW = FALSE
)
|
genes.labels |
numeric array |
network |
numeric array symmetric, gene-by-gene matrix |
nFold |
numeric value, default is 3 |
output |
string, default is AUROC |
FLAG_DRAW |
binary flag to draw roc plot |
scores numeric matrix with a row for each gene label and columns auc: the average area under the ROC or PR curve for the neighbor voting predictor across cross validation replicates avg_node_degree: the average node degree degree_null_auc: the area the ROC or PR curve for the node degree predictor
1 2 3 4 5 6 7 8 9 10 | genes.labels <- matrix( sample( c(0,1), 1000, replace=TRUE), nrow=100)
rownames(genes.labels) = paste('gene', 1:100, sep='')
colnames(genes.labels) = paste('function', 1:10, sep='')
net <- cor( matrix( rnorm(10000), ncol=100), method='spearman')
rownames(net) <- paste('gene', 1:100, sep='')
colnames(net) <- paste('gene', 1:100, sep='')
aurocs <- neighbor_voting(genes.labels, net, output = 'AUROC')
avgprcs <- neighbor_voting(genes.labels, net, output = 'PR')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.