Nothing
gates.test <- function(Y, G1, G2, alpha = 0.05, me.est = c("ChevNy", "Keff", "LiJi","Galwey")){
Y.arg <- deparse(substitute(Y))
G1.arg <- deparse(substitute(G1))
G2.arg <- deparse(substitute(G2))
if (!is.null(dim(Y))) {
Y <- Y[, 1]
}
if (nlevels(as.factor(Y)) != 2) {
stop("response variable should be binary. (2 modes).")
} else if (!is(G1,"SnpMatrix") | !is(G2,"SnpMatrix")) {
stop("G1 and G2 arguments should be SnpMatrix objects.")
} else if (nrow(G1) != nrow(G2)) {
stop("G1 and G2 should have same rows count.")
} else if (length(Y) != nrow(G1) | length(Y) != nrow(G2)) {
stop("Response variable should be conformant with genes matrices rows number.")
} else if (sum(is.na(G1))!=0) {
stop("The snpMatrix must be complete. No NAs are allowed.")
} else if (sum(is.na(G2))!=0) {
stop("The snpMatrix must be complete. No NAs are allowed.")
} else if (sum(is.na(Y)) != 0) {
stop("The response variable vector must be complete. No NAs are allowed.")
} else if (!is.numeric(alpha) | !(alpha >= 0 & alpha <= 1)) {
stop("alpha argument should a numeric in [0, 1].")
} else if (!is.character(me.est)) {
stop("me.est argument should be a character string either ChevNy, Keff, LiJi or Galwey")
}
me.est <- try(match.arg(me.est))
Y <- as.numeric(Y)
if(min(Y)!=0){Y<-Y-min(Y)}
Y <- as.factor(Y)
if (is(me.est,"try-error")) {
stop("me.est argument has an incorrect value. Select one: ChevNy, Keff, LiJi, Galwey.")
}
# GATES test is set up
# SNP interactions are computed
SSI.res <- SSI.test(Y, G1, G2)
## Computation of the correlation matrix
MatCor1 <- snpStats::ld(G1, G1, stats="R")
MatCor2 <- snpStats::ld(G2, G2, stats="R")
n1 <- ncol(MatCor1)
n2 <- ncol(MatCor2)
n.pairs <- n1*n2
sigma.matrix <- matrix(NA,ncol=n.pairs,nrow=n.pairs)
for (i in seq_len(n.pairs-1)){
i1 <- floor((i-1)/n2)+1
j1 <- i-(i1-1)*n2
for (j in (i+1):n.pairs){
i2 <- floor((j-1)/n2)+1
j2 <- j-(i2-1)*n2
sigma.matrix[i,j] <- sigma.matrix[j,i] <- MatCor1[i1,i2]*MatCor2[j1,j2]
}
}
diag(sigma.matrix) <- 1
## Correlation is sorted according to the SSI tests.
sigma.matrix[order(as.numeric(t(SSI.res))),order(as.numeric(t(SSI.res)))]
# GATES test is computed past this point
sorted.SSI <- sort(SSI.res)
me <- switch(me.est,
ChevNy = ChevNy.me(sigma.matrix),
Keff = Keff.me(sigma.matrix, alpha),
LiJi = LiJi.me(sigma.matrix),
Galwey = Galwey.me(sigma.matrix)
)
GG.PGates <- min(me$Meff * sorted.SSI/me$mej)
pval <- as.numeric(GG.PGates)
stat <- sorted.SSI[which.min(me$Meff * sorted.SSI/me$mej)]
names(stat)="GATES"
#res <- list(statistic=stat,p.value=pval,method="GATES")
#class(res) <- "GGItest"
# return(res)
null.value <- NULL
# names(null.value) <- "GATES"
estimate <- c(stat)
names(estimate) <- c("GATES")
parameters <- NULL
# names(parameters) <- ""
res <- list(
null.value=null.value,
alternative="less",
method="Gene-based interaction based on GATES method",
estimate= estimate,
data.name=paste(Y.arg," and (",G1.arg," , ",G2.arg,")",sep=""), statistic=stat,
p.value=pval,
parameters=parameters)
class(res) <- "htest"
return(res)
# return(GG.PGates)
}
# Cheverud-Nyholt Me estimation method
ChevNy.me <- function(sigma.matrix) {
if (!is.matrix(sigma.matrix)) {
stop("sigma.matrix argument should be a numeric matrix.")
}
N <- ncol(sigma.matrix)
Meff <- 1 +(1/N)*sum(1-sigma.matrix^2, na.rm=TRUE)
mej <- numeric(ncol(sigma.matrix))
for (i in seq_len(ncol(sigma.matrix))){
mej[i] <- 1 + (1/i)*sum(1-sigma.matrix[seq_len(i), seq_len(i)]^2, na.rm=TRUE)
}
return(list(Meff=Meff, mej=mej))
}
# Meff and Mej are estimated through the computation of
# Keff and kj
Keff.me <- function(sigma.matrix, alpha=0.05) {
if (!is.matrix(sigma.matrix)) {
stop("sigma.matrix argument should be a numeric matrix.")
} else if (alpha < 0 | alpha > 1) {
stop("alpha argument should be comprised between 0 and 1.")
}
N <- ncol(sigma.matrix)
kj <- rep(NA,N)
kj[1] <- 0
for (i in 2:length(kj)){
if (alpha > 0.01) {
rj <- max(abs(sigma.matrix[(seq_len(i-1)), i]))
sig <- qnorm(1-(alpha/2))
f <- function(x, alpha, rj, sd) { exp(-0.5*x^2) * pnorm((rj*x - sd)/sqrt(1 - rj^2)) }
int.f <- integrate(f, lower=-sig, upper=sig, alpha=alpha, rj=rj, sd=sig)$value
kj[i] <- ( (1/log(1-alpha)) * log(1 - (1/(1 - alpha)) * sqrt(2/pi) * int.f) )
} else {
rj <- max(abs(sigma.matrix[(seq_len(i-1)), i]))
kj[i] <- sqrt(1 - rj^(-1.31*log10(alpha)))
}
}
Keff <- 1 + sum(kj)
mej <- 1 + cumsum(kj)
return(list(Meff=Keff, mej=mej))
}
# Li & Ji method to estimate Meff & mej
LiJi.me <- function(sigma.matrix) {
if (!is.matrix(sigma.matrix)) {
stop("sigma.matrix argument should be a numeric matrix.")
}
N <- ncol(sigma.matrix)
f <- function(x) { ifelse(x >= 1, 1, 0) + (x - floor(x)) }
res.vec=rep(NA,times=N)
res.vec[1]=1
for (i in 2:N){
eig.val <- eigen(sigma.matrix[seq_len(i),seq_len(i)])$values
eig.val <- f(abs(eig.val))
res.vec[i]=sum(eig.val)
}
# mej <- cumsum(eig.val)
Meff <- res.vec[length(res.vec)]
return(list(Meff=Meff, mej=res.vec))
}
# Galwey method to estimate Meff & mej
Galwey.me <- function(sigma.matrix) {
if (!is.matrix(sigma.matrix)) {
stop("sigma.matrix argument should be a numeric matrix.")
}
N <- ncol(sigma.matrix)
f <- function(x) { ifelse(x >= 1, 1, 0) + (x - floor(x)) }
res.vec=rep(NA,times=N)
res.vec[1]=1
for (i in 2:N){
eig = eigen(sigma.matrix[seq_len(i),seq_len(i)])$values
eig <- eig[which(eig >= 0)]
res.vec[i] <- sum(sqrt(eig))^2/sum(eig)
}
# mej <- cumsum(eig.val)
Meff <- res.vec[length(res.vec)]
return(list(Meff=Meff, mej=res.vec))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.