Description Usage Arguments Value See Also Examples
View source: R/hpGeneHeatmap.R
This function draw a heatmap corresponding to the result of the pathway consensus method. For each gene of the pathway under focus and each HP of interest it shows the best score.
1 2 3 | hpGeneHeatmap(hpGeneListRes, genesOfInterest = NULL, geneLabels = NULL,
hpLabels = NULL, clustByGene = TRUE, clustByHp = TRUE,
palFun = colorRampPalette(c("white", "red")), goiCol = "blue", ...)
|
hpGeneListRes |
the result of the |
genesOfInterest |
a list of gene to highlight. |
geneLabels |
a named vector of gene labels (all the genes id found in hpGeneListRes should be in names(geneLabels)). |
hpLabels |
a named vector of HP labels (all the HP id found in hpGeneListRes should be in names(hpLabels)). |
clustByGene |
should the heatmap be clustered according to genes (default: TRUE). |
clustByHp |
should the heatmap be clustered according to HP (default: TRUE). |
palFun |
the palette function for the heatmap. |
goiCol |
the color used to highlight genes of interest. |
... |
parameters for the codeheatmap function |
A list of 2 matrix (invisible return):
For each gene and each HP of interest the best match value.
The gene associated HP best matching the HP of interest.
hpGeneListComp
, hpSetCompBestMatch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | data(geneByHp, hp_descendants, package="PCAN")
data(hp_ancestors, hpDef, package="PCAN")
data(traitDef, geneDef, package="PCAN")
data(hpByTrait, package="PCAN")
geneByHp <- unstack(geneByHp, entrez~hp)
###########################################
## Compute information content of each HP according to associated genes
ic <- computeHpIC(geneByHp, hp_descendants)
###########################################
## Use case: comparing a gene and a disease
omim <- "612285"
traitDef[which(traitDef$id==omim),]
entrez <- "57545"
geneDef[which(geneDef$entrez==entrez),]
## Get HP terms associated to the disease
hpOfInterest <- hpByTrait$hp[which(hpByTrait$id==omim)]
## Get HP terms associated to the gene
hpByGene <- unstack(stack(geneByHp), ind~values)
geneHps <- hpByGene[[entrez]]
## HP Comparison
hpGeneResnik <- compareHPSets(
hpSet1=names(ic), hpSet2=hpOfInterest,
IC=ic,
ancestors=hp_ancestors,
method="Resnik",
BPPARAM=SerialParam()
)
hpMatByGene <- lapply(
hpByGene,
function(x){
hpGeneResnik[x, , drop=FALSE]
}
)
resnSss <- unlist(lapply(
hpMatByGene,
hpSetCompSummary,
method="bma", direction="symSim"
))
candScore <- resnSss[entrez]
###########################################
## The pathway consensus approach
## What about genes belonging to the same pathways as the candidate
data(rPath, hsEntrezByRPath, package="PCAN")
candPath <- names(hsEntrezByRPath)[which(unlist(lapply(
hsEntrezByRPath,
function(x) entrez %in% x
)))]
rPath[which(rPath$Pathway %in% candPath),]
rPathRes <- hpGeneListComp(
geneList=hsEntrezByRPath[[candPath]],
ssMatByGene = hpMatByGene,
geneSSScore = resnSss
)
hist(
resnSss,
breaks=100, col="grey",
ylim=c(0,5),
xlab=expression(Sim[sym]),
ylab="Density",
main=paste(
"Distribution of symmetric semantic similarity scores for all the",
length(resnSss), "genes"
),
probability=TRUE
)
toAdd <- hist(
rPathRes$scores,
breaks=100,
plot=FALSE
)
for(i in 1:length(toAdd$density)){
polygon(
x=toAdd$breaks[c(i, i+1, i+1, i)],
y=c(0, 0, rep(toAdd$density[i], 2)),
col="#BE000040",
border="#800000FF"
)
}
legend(
"topright",
paste0(
"Genes belonging to the ", candPath," pathway:\n'",
rPath[which(rPath$Pathway %in% candPath),"Pathway_name"],
"'\nand with a symmetric semantic similarity score (",
sum(!is.na(rPathRes$scores)),
"/",
length(rPathRes$scores),
")\n",
"p-value: ", signif(rPathRes$p.value, 2)
),
pch=15,
col="#BE000040",
bty="n",
cex=0.6
)
## Assessing the symmetric semantic similarity for each gene in the pathway
pathSss <- rPathRes$scores[which(!is.na(rPathRes$scores))]
names(pathSss) <- geneDef[match(names(pathSss), geneDef$entrez), "symbol"]
opar <- par(mar=c(7.1, 4.1, 4.1, 2.1))
barplot(
sort(pathSss),
las=2,
ylab=expression(Sim[sym]),
main=rPath[which(rPath$Pathway %in% candPath),"Pathway_name"]
)
p <- c(0.25, 0.5, 0.75, 0.95)
abline(
h=quantile(resnSss, probs=p),
col="#BE0000",
lty=c(2, 1, 2, 2),
lwd=c(2, 2, 2, 1)
)
text(
rep(0,4),
quantile(resnSss, probs=p),
p,
pos=3,
offset=0,
col="#BE0000",
cex=0.6
)
legend(
"topleft",
paste0(
"Quantiles of the distribution of symmetric semantic similarity\n",
"scores for all the genes."
),
lty=1,
col="#BE0000",
cex=0.6
)
par(opar)
## A heatmap showing the best HP match for each gene in the pathway
geneLabels <- geneDef$symbol[which(!duplicated(geneDef$entrez))]
names(geneLabels) <- geneDef$entrez[which(!duplicated(geneDef$entrez))]
hpLabels <- hpDef$name
names(hpLabels) <- hpDef$id
hpGeneHeatmap(
rPathRes,
genesOfInterest=entrez,
geneLabels=geneLabels,
hpLabels=hpLabels,
clustByGene=TRUE,
clustByHp=TRUE,
palFun=colorRampPalette(c("white", "red")),
goiCol="blue",
main=rPath[which(rPath$Pathway %in% candPath),"Pathway_name"]
)
###########################################
## What about genes interacting with the candidate (including itself)
data(hqStrNw, package="PCAN")
neighbors <- unique(c(
hqStrNw$gene1[which(hqStrNw$gene2==entrez)],
hqStrNw$gene2[which(hqStrNw$gene1==entrez)],
entrez
))
neighRes <- hpGeneListComp(
geneList=neighbors,
ssMatByGene = hpMatByGene,
geneSSScore = resnSss
)
hist(
resnSss,
breaks=100, col="grey",
ylim=c(0,10),
xlab=expression(Sim[sym]),
ylab="Density",
main=paste(
"Distribution of symmetric semantic similarity scores for all the",
length(resnSss), "genes"
),
probability=TRUE
)
toAdd <- hist(
neighRes$scores,
breaks=100,
plot=FALSE
)
for(i in 1:length(toAdd$density)){
polygon(
x=toAdd$breaks[c(i, i+1, i+1, i)],
y=c(0, 0, rep(toAdd$density[i], 2)),
col="#BE000040",
border="#800000FF"
)
}
legend(
"topright",
paste0(
"Genes interacting with ",
geneDef[which(geneDef$entrez==entrez),"symbol"],
" (", entrez, ")",
"\nand with a symmetric semantic similarity score (",
sum(!is.na(neighRes$scores)),
"/",
length(neighRes$scores),
")\n",
"p-value: ", signif(neighRes$p.value, 2)
),
pch=15,
col="#BE000040",
bty="n",
cex=0.6
)
## Assessing the symmetric semantic similarity score for each interacting gene
neighSss <- neighRes$scores[which(!is.na(neighRes$scores))]
names(neighSss) <- geneDef[match(names(neighSss), geneDef$entrez), "symbol"]
opar <- par(mar=c(7.1, 4.1, 4.1, 2.1))
barplot(
sort(neighSss),
las=2,
ylab=expression(Sim[sym]),
main=paste0(
"Genes interacting with ",
geneDef[which(geneDef$entrez==entrez),"symbol"],
" (", entrez, ")"
)
)
p <- c(0.25, 0.5, 0.75, 0.95)
abline(
h=quantile(resnSss, probs=p),
col="#BE0000",
lty=c(2, 1, 2, 2),
lwd=c(2, 2, 2, 1)
)
text(
rep(0,4),
quantile(resnSss, probs=p),
p,
pos=3,
offset=0,
col="#BE0000",
cex=0.6
)
legend(
"topleft",
paste0(
"Quantiles of the distribution of symmetric semantic similarity\n",
"scores for all the genes."
),
lty=1,
col="#BE0000",
cex=0.6
)
par(opar)
## A heatmap showing the best HP match for each neighbor gene
hpGeneHeatmap(
neighRes,
genesOfInterest=entrez,
geneLabels=geneLabels,
hpLabels=hpLabels,
clustByGene=TRUE,
clustByHp=TRUE,
palFun=colorRampPalette(c("white", "red")),
goiCol="blue",
main=rPath[which(rPath$Pathway %in% candPath),"Pathway_name"]
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.