Description Usage Arguments Value Author(s) See Also Examples
This function takes a TNA object and returns the results of the RMA analysis over a list of regulons from a transcriptional network (with multiple hypothesis testing corrections).
| 1 2 | 
| object | a preprocessed object of class 'TNA'  | 
| pValueCutoff | a single numeric value specifying the cutoff for p-values considered significant. | 
| pAdjustMethod | a single character value specifying the p-value adjustment method to be used (see 'p.adjust' for details). | 
| minRegulonSize | a single integer or numeric value specifying the minimum number of elements in a regulon that must map to elements of the gene universe. Gene sets with fewer than this number are removed from the analysis. | 
| tnet | a single character value specifying which transcriptional network should to used to compute the MRA analysis. Options: "dpi" and "ref". | 
| tfs | an optional vector with transcription factor identifiers. | 
| verbose | a single logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). | 
a data frame in the slot "results", see 'rma' option in tna.get.
Mauro Castro
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | data(tniData)
data(tnaData)
## Not run: 
rtni <- tni.constructor(expData=tniData$expData, 
        regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"), 
        rowAnnotation=tniData$rowAnnotation)
rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)
rtna <- tni2tna.preprocess(rtni, phenotype=tnaData$phenotype, 
        hits=tnaData$hits, phenoIDs=tnaData$phenoIDs)
#run MRA analysis pipeline
rtna <- tna.mra(rtna)
#get results
tna.get(rtna,what="mra")
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.