Description Usage Arguments Value References See Also Examples
Uses aREA
3-tail algorithm to compute regulon activity for
TNI-class
objects.
1 2 3 |
object |
a preprocessed object of class 'TNI' |
minRegulonSize |
a single integer or numeric value specifying the minimum number of elements in a regulon. Regulons smaller than this number are removed from the analysis. |
sizeFilterMethod |
a single character value specifying the use of the 'minRegulonSize' argument, which is applyed to regulon's positive and negative targets. Options: "posANDneg", "posORneg", "posPLUSneg". For "posANDneg", the number of both positive and negative targets should be > 'minRegulonSize'; for "posORneg", the number of either positive or negative targets should be > 'minRegulonSize'; and for "posPLUSneg", the number of all targets should be > 'minRegulonSize'. |
scale |
A logical value specifying if expression values should be centered and scaled across samples (when verbose=TRUE) or not (when verbose=FALSE). |
tnet |
can take values of 'refnet', 'dpi' or 'cdt'. It refers to the version of the regulatory network that will be used for GSEA analysis. |
regulatoryElements |
an optional vector with transcription factor identifiers. |
samples |
an optional string vector containing the sample names for which will be computed regulon activity. |
features |
a string vector containing features for feature selection. |
refsamp |
an optional string vector containing the names of the reference samples for differential expression calculations. If not provided, then the average of all samples will be used as reference. |
log |
a logical value. If TRUE, differential expression calculations will be computed in log space. |
verbose |
a single logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). |
doSizeFilter |
a logical value. If TRUE, negative and positive targets are independently verified by the 'minRegulonSize' argument. |
a list with enrichment scores for all samples in the TNI.
Alvarez et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nature Genetics, 48(8):838-847, 2016.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | data(tniData)
## Not run:
rtni <- tni.constructor(expData=tniData$expData,
regulatoryElements=c("PTTG1","E2F2","FOXM1","E2F3","RUNX2"),
rowAnnotation=tniData$rowAnnotation)
rtni <- tni.permutation(rtni)
rtni <- tni.bootstrap(rtni)
rtni <- tni.dpi.filter(rtni)
#run aREA algorithm
rtni <- tni.area3(rtni)
#get results
regulonActivity <- tni.get(rtni, what = "regulonActivity")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.