Nothing
computePvalues <- function(minSlopes, mpDiffs, binWidth, type, pAdj){
## Compute p-values of melt point differences as described by Cox et al.(2008)
## Bin melting points according to slope values:
iValid <- !is.na(minSlopes)
minSlopes <- minSlopes[iValid]
mpDiffs <- mpDiffs[iValid]
bins <- assignBins(x=minSlopes, w=binWidth)
## Compute p-values for each bin
pVals <- rep(NA_real_, length(bins))
for (b in unique(bins)){
iBin <- which(bins==b)
pVals[iBin] <- pValsCurrentBin(mpDiffs[iBin], type=type)
}
## Perform Benjamini-Hochberg correction (over all bins)
pVals <- p.adjust(pVals, pAdj)
## Output vector
pOut <- rep(NA_real_, length(minSlopes))
pOut[iValid] <- pVals
return(pOut)
}
assignBins <- function(x, w, collapseSmallest = TRUE){
mpNum <- length(x)
binWidthRel <- w/mpNum
binProp <- sort(unique(c(seq(1, 0, by=-binWidthRel), 0)))
bounds <- quantile(x, binProp, na.rm=TRUE)
bins <- .bincode(x, bounds, include.lowest=TRUE, right=TRUE)
## If bin with lowest values is smaller than the others, include it into the
## succeeding bin:
if (collapseSmallest){
if (sum(bins==1) < w) bins[bins==1] <- 2
}
return(bins)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.