Nothing
testDatDummy <- expand.grid(uniqueID = paste("protein", 1:5),
testHypothesis = c("null", "alternative"),
splineDF = 3:5) %>%
arrange(uniqueID) %>%
mutate(aicc = 1:nrow(.))
test_that(desc = "allOk_defaults_minDF", code = {
statsIn <- testDatDummy
out <- modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative")
check1 <- nrow(out) == length(unique(statsIn$uniqueID))
check2 <- all(out$splineDF == 3)
expect_true(check1 & check2)
})
test_that(desc = "allOk_defaults_maxDF", code = {
statsIn <- testDatDummy %>% mutate(aicc = rev(aicc))
out <- modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative")
check1 <- nrow(out) == length(unique(statsIn$uniqueID))
check2 <- all(out$splineDF == 5)
expect_true(check1 & check2)
})
test_that(desc = "colsAreFactors", code = {
statsIn <- testDatDummy %>%
mutate(uniqueID = factor(uniqueID),
testHypothesis = factor(testHypothesis))
out <- modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative")
check1 <- nrow(out) == length(unique(statsIn$uniqueID))
check2 <- all(out$splineDF == 3)
expect_true(check1 & check2)
})
test_that(desc = "fitStats_missing", code = {
expect_error(modelSelector(criterion = "aicc",
hypothesis = "alternative"))
})
test_that(desc = "criterion_not_present", code = {
statsIn <- testDatDummy
expect_error(modelSelector(statsIn, criterion = "dummy",
hypothesis = "alternative"))
})
test_that(desc = "hypothesis_col__not_present", code = {
statsIn <- testDatDummy %>%select(-testHypothesis)
expect_error(modelSelector(statsIn,
criterion = "aicc",
hypothesis = "alternative"))
})
test_that(desc = "idCol_splineDFCol_not_present", code = {
statsIn <- testDatDummy %>% select(-splineDF, -uniqueID)
expect_error(modelSelector(statsIn,
criterion = "aicc",
hypothesis = "alternative"))
})
test_that(desc = "splineDF_not_numeric", code = {
statsIn <- testDatDummy %>% mutate(splineDF = as.character(splineDF))
expect_error(modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative"))
})
test_that(desc = "splineDF_col_allNA", code = {
statsIn <- testDatDummy %>% mutate(splineDF = NA_real_)
out <- modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative")
check1 <- nrow(out) == length(unique(statsIn$uniqueID))
check2 <- all(is.na(out$splineDF))
expect_true(check1 & check2)
})
test_that(desc = "splineDF_col_hasNA", code = {
statsIn <- testDatDummy
statsIn$splineDF[2] <- NA
out <- modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative")
check1 <- nrow(out) == length(unique(statsIn$uniqueID))
check2 <- is.na(out$splineDF[1])
expect_true(check1 & check2)
})
test_that(desc = "aicc_not_numeric", code = {
statsIn <- testDatDummy %>% mutate(aicc = as.character(aicc))
expect_error(modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative"))
})
test_that(desc = "aicc_ties", code = {
statsIn <- testDatDummy
statsIn$aicc[1:2] <- 1
out <- modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative")
check1 <- nrow(out) == length(unique(statsIn$uniqueID))
check2 <- out$splineDF[1] == 3
expect_true(check1 & check2)
})
test_that(desc = "aicc_col_allNA", code = {
statsIn <- testDatDummy
statsIn$aicc <- NA_real_
out <- modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative") # Expected outcome: return splineDF = NA
check1 <- nrow(out) == length(unique(statsIn$uniqueID))
check2 <- all(is.na(out$splineDF))
expect_true(check1 & check2)
})
test_that(desc = "aicc_col_hasNA1", code = {
statsIn <- testDatDummy
statsIn$aicc[1:6] <- NA # Set aicc = NA for protein1
out <- modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative") # Expected outcome: return splineDF = NA only for protein1
check1 <- nrow(out) == length(unique(statsIn$uniqueID))
check2 <- is.na(out$splineDF[which(out$uniqueID == "protein 1")])
check3 <- all(out$splineDF[-which(out$uniqueID == "protein 1")])
expect_true(check1 & check2 & check3)
})
test_that(desc = "aicc_col_hasNA2", code = {
statsIn <- testDatDummy
statsIn$aicc[2] <- NA
out <- modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative")
check1 <- nrow(out) == length(unique(statsIn$uniqueID))
check2 <- out$splineDF[1] == 4
check3 <- all(out$splineDF[2:5] == 3)
expect_true(check1 & check2 & check3)
})
test_that(desc = "hypothesis_col_hasNA", code = {
statsIn <- testDatDummy
statsIn$testHypothesis[2] <- NA
expect_warning(modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative"))
})
test_that(desc = "hypothesis_col_allNA", code = {
statsIn <- testDatDummy
statsIn$testHypothesis <- NA
expect_error(modelSelector(fitStats = statsIn,
criterion = "aicc",
hypothesis = "alternative"))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.