Nothing
data(hdacTR_smallExample)
tpptrData <- suppressMessages(
tpptrImport(configTable = hdacTR_config, data = hdacTR_data)
)
testData <- tpptrTidyUpESets(tpptrData, returnType = "exprs") %>%
filter(uniqueID %in% c("HDAC1", "HDAC2", "HDAC9", "CBR3"))
splineFits <- suppressMessages(
tpptrFitSplines(data = testData, factorsH1 = "condition", returnModels = TRUE,
splineDF = 4, nCores = 1)
)
splineFits2 <- suppressMessages(
tpptrFitSplines(data = testData,
factorsH1 = c("condition", "replicate"),
factorsH0 = c("replicate"),
returnModels = TRUE,
splineDF = 4,
nCores = 1)
)
splineFits3 <- suppressMessages(
tpptrFitSplines(data = testData,
factorsH1 = c("condition", "replicate"),
returnModels = TRUE,
splineDF = 4,
nCores = 1)
)
test_that(desc="allOk", code={
datIn <- testData
fitsIn <- splineFits
aucs <- tpptrSplineAUCs(data = datIn, fits = fitsIn)
check1 <- nrow(aucs) == sum(fitsIn$testHypothesis == "null" & fitsIn$successfulFit) + 2*sum(fitsIn$testHypothesis == "alternative" & fitsIn$successfulFit)
check2 <- setdiff(colnames(fitsIn), colnames(aucs)) == "fittedModel"
check3 <- all(setdiff(colnames(aucs), colnames(fitsIn)) == c("auc", "xMin", "xMax", "condition"))
check4 <- !all(is.na(aucs$auc))
expect_true(check1 & check2 & check3 & check4)
})
test_that(desc="allOk2", code={
datIn <- testData
fitsIn <- splineFits2
aucs <- tpptrSplineAUCs(data = datIn, fits = fitsIn)
check1 <- nrow(aucs) == 2 * sum(fitsIn$testHypothesis == "null" & fitsIn$successfulFit) + 4*sum(fitsIn$testHypothesis == "alternative" & fitsIn$successfulFit)
check2 <- setdiff(colnames(fitsIn), colnames(aucs)) == "fittedModel"
check3 <- all(setdiff(colnames(aucs), colnames(fitsIn)) == c("replicate", "auc", "xMin", "xMax", "condition"))
check4 <- all(unique(aucs$replicate) == c("Replicate1", "Replicate2"))
check5 <- all(unique(aucs$condition) == c("null model", "Treatment", "Vehicle"))
check6 <- !any(is.na(aucs$auc))
expect_true(check1 & check2 & check3 & check4 & check5 & check6)
})
test_that(desc="allOk3", code={
datIn <- testData
fitsIn <- splineFits3
aucs <- tpptrSplineAUCs(data = datIn, fits = fitsIn)
check1 <- nrow(aucs) == sum(fitsIn$testHypothesis == "null" & fitsIn$successfulFit) + 4*sum(fitsIn$testHypothesis == "alternative" & fitsIn$successfulFit)
check2 <- setdiff(colnames(fitsIn), colnames(aucs)) == "fittedModel"
check3 <- all(setdiff(colnames(aucs), colnames(fitsIn)) == c("auc", "xMin", "xMax", "condition", "replicate"))
check4 <- all(unique(aucs$replicate) == c("null model", "Replicate1", "Replicate2"))
check5 <- all(unique(aucs$condition) == c("null model", "Treatment", "Vehicle"))
# check6 <- sum(is.na(aucs$auc)) == 1 # to do: fix this so that NA dissapears
expect_true(check1 & check2 & check3 & check4 & check5)
})
test_that(desc="allOk_H0", code={
datIn <- testData
fitsIn <- splineFits %>% filter(testHypothesis == "null")
aucs <- tpptrSplineAUCs(data = datIn, fits = fitsIn)
check1 <- nrow(aucs) == sum(fitsIn$successfulFit)
check2 <- setdiff(colnames(fitsIn), colnames(aucs)) == "fittedModel"
check3 <- all(setdiff(colnames(aucs), colnames(fitsIn)) == c("auc", "xMin", "xMax"))
check4 <- !("condition" %in% colnames(aucs))
# check5 <- sum(is.na(aucs$auc)) == 1 # to do: fix this so that NA dissapears
expect_true(check1 & check2 & check3 & check4)
})
test_that(desc="allOk_H1", code={
datIn <- testData
fitsIn <- splineFits %>% filter(testHypothesis == "alternative")
aucs <- tpptrSplineAUCs(data = datIn, fits = fitsIn)
check1 <- nrow(aucs) == sum(fitsIn$successfulFit) * 2
check2 <- setdiff(colnames(fitsIn), colnames(aucs)) == "fittedModel"
check3 <- all(setdiff(colnames(aucs), colnames(fitsIn)) == c("condition", "auc", "xMin", "xMax"))
check4 <- !any(is.na(aucs$auc))
expect_true(check1 & check2 & check3 & check4)
})
test_that(desc="modelColMissing", code={
fitsIn <- splineFits %>% select(-fittedModel)
datIn <- testData
expect_error(tpptrSplineAUCs(data = datIn, fits = fitsIn))
})
test_that(desc="modelColInvalid", code={
# If a column with assumed models is given, they are passed on to the
# prediction. Invalid model types are handeled directly by the prediction
# function by returning NA for each value of x.
fitsIn <- splineFits %>% mutate(fittedModel = NA) # Create invalid models
datIn <- testData
aucs <- tpptrSplineAUCs(data = datIn, fits = fitsIn)
check1 <- nrow(aucs) == sum(fitsIn$successfulFit)
check2 <- setdiff(colnames(fitsIn), colnames(aucs)) == "fittedModel"
check3 <- all(setdiff(colnames(aucs), colnames(fitsIn)) == c("auc", "xMin", "xMax"))
check4 <- !("condition" %in% colnames(aucs))
check5 <- all(is.na(aucs$auc))
expect_true(check1 & check2 & check3 & check4 & check5)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.