Nothing
# centers and standardizes the numeric activity scores for
# a bioassaySet object
# only consideres '0' values actually encoded in the i,j,x representation
# of the sparse matrix- omits empty '0' entries
# these can be computationally distinguished because the sparse matrix actually returns
# zero values it was loaded with.
scaleBioassaySet <- function(bioassaySet, center=TRUE, scale=TRUE){
if(class(bioassaySet) != "bioassaySet")
stop("input not of class bioassaySet")
if(class(center) != "logical")
stop("center option not of class logical (TRUE or FALSE)")
if(class(scale) != "logical")
stop("scale option not of class logical (TRUE or FALSE)")
tMatrix <- as(bioassaySet@scores, "TsparseMatrix")
sortIndex <- sort(tMatrix@i, decreasing=F, index.return=T)$ix
i <- tMatrix@i[sortIndex]
j <- tMatrix@j[sortIndex]
x <- tMatrix@x[sortIndex]
standardScores <- tapply(x, i, scale, center = center, scale = scale, simplify=FALSE)
standardScores <- do.call(c, standardScores)
bioassaySet@scores <- sparseMatrix(
i = i,
j = j,
x = standardScores,
dims = tMatrix@Dim,
dimnames = tMatrix@Dimnames,
symmetric = FALSE,
index1 = FALSE)
return(bioassaySet)
}
# returns a ChemmineR style FPset object for a given set of cids and targets
bioactivityFingerprint <- function(bioassaySet, targets = FALSE, summarizeReplicates = "activesFirst"){
if(class(bioassaySet) != "bioassaySet")
stop("input not of class bioassaySet")
if(class(summarizeReplicates) != "function" && summarizeReplicates != "mode" && summarizeReplicates != "activesFirst")
stop("invalid conflict resolver option")
if(targets){
if(length(targets) < 1){
stop("target list must have at least one valid entry")
}
if(is.numeric(targets)){
targets <- as.character(targets)
} else if(! is.character(targets)){
stop("targets not class numeric or character")
}
} else {
targets <- allTargets(bioassaySet)
}
activityMatrix <- perTargetMatrix(bioassaySet, inactives = TRUE, targetOrder = targets, summarizeReplicates = summarizeReplicates)
binaryMatrix <- t(as.matrix(1*(activityMatrix > 1)))
fingerPrint <- as(binaryMatrix, "FPset")
slot(fingerPrint, "type") <- "bioactivity"
return(fingerPrint)
}
# lists all CIDS present in a BioassayDB, bioassay, bioassaySet, or target matrix (dgCMatrix) object
allCids <- function(inputObject, activesOnly = FALSE){
if(class(activesOnly) != "logical")
stop("activesOnly not of class logical (TRUE / FALSE)")
if(class(inputObject) == "BioassayDB"){
return(.allCids(inputObject, activesOnly)[[1]])
} else if(class(inputObject) == "bioassay"){
if(activesOnly)
return(unique(slot(inputObject, "scores")$cid[slot(inputObject, "scores")$activity == 1]))
else
return(unique(slot(inputObject, "scores")$cid))
} else if(class(inputObject) == "bioassaySet"){
if(activesOnly)
return(unique(colnames(slot(inputObject, "activity"))[which(slot(inputObject, "activity") == 2, arr.ind=T)[,2]]))
else
return(unique(colnames(slot(inputObject, "activity"))))
} else if(class(inputObject) == "dgCMatrix"){
if(activesOnly)
return(unique(colnames(inputObject)[which(inputObject == 2, arr.ind=T)[,2]]))
else
return(unique(colnames(inputObject)))
} else
stop("inputObject not of BioassayDB, bioassay, bioassaySet, or target matrix (dgCMatrix) class")
}
# lists all Target IDs present in a BioassayDB, bioassay, bioassaySet, or target matrix (dgCMatrix) object
allTargets <- function(inputObject){
if(class(inputObject) == "BioassayDB"){
return(.allTargets(inputObject)[[1]])
} else if(class(inputObject) == "bioassay"){
return(unique(slot(inputObject, "targets")))
} else if(class(inputObject) == "bioassaySet"){
return(unique(colnames(slot(inputObject, "targets"))))
} else if(class(inputObject) == "dgCMatrix"){
return(unique(rownames(inputObject)))
} else
stop("inputObject not of BioassayDB, bioassay, bioassaySet, or target matrix (dgCMatrix) class")
}
# takes a cid and returns a table of the targets it shows activity against
activeTargets <- function(database, cid){
if(class(database) != "BioassayDB")
stop("database not of class BioassayDB")
if(is.numeric(cid)){
cid <- as.character(cid)
} else if(! is.character(cid)){
stop("input not class character")
}
if(length(cid) > 1){
warning("too many inputs, only the first was kept")
cid <- cid[1]
}
if(! grepl("^[a-zA-Z_0-9\\s]+$", cid, perl=T))
stop("invalid input: must contain only alphanumerics and/or whitespace")
queryResult <- .targetsByCid(database, cid)
if(nrow(queryResult) == 0){ return (NA) }
queryByTarget <- split(queryResult$'activity', queryResult$'target')
resultByTarget <- t(sapply(queryByTarget, function(x){
x <- x[! is.na(x)]
c(sum(x)/length(x), length(x))
}))
resultByTarget <- resultByTarget[resultByTarget[,1] > 0,,drop=F]
if(nrow(resultByTarget) == 0){ return (NA) }
resultByTarget <- resultByTarget[!is.na(rownames(resultByTarget)),,drop=F]
if(nrow(resultByTarget) == 0){ return (NA) }
colnames(resultByTarget) <- c("fraction_active", "total_screens")
return(resultByTarget)
}
# takes a cid and returns a table of the targets it has been found inactive against
inactiveTargets <- function(database, cid){
if(class(database) != "BioassayDB")
stop("database not of class BioassayDB")
if(is.numeric(cid)){
cid <- as.character(cid)
} else if(! is.character(cid)){
stop("input not class character")
}
if(length(cid) > 1){
warning("too many inputs, only the first was kept")
cid <- cid[1]
}
if(! grepl("^[a-zA-Z_0-9\\s]+$", cid, perl=T))
stop("invalid input: must contain only alphanumerics and/or whitespace")
queryResult <- .targetsByCid(database, cid, activity = 0)
if(nrow(queryResult) == 0){ return (NA) }
inactiveTargets <- table(queryResult[,3])
inactiveTargets <- as.data.frame(inactiveTargets, row.names=(names(inactiveTargets)))[,2, drop=FALSE]
colnames(inactiveTargets) <- "inactive screens"
return(inactiveTargets)
}
# takes a target id and returns a table of compounds that show activity against it
activeAgainst <- function(database, target){
if(class(database) != "BioassayDB")
stop("database not of class BioassayDB")
if(is.numeric(target)){
target <- as.character(target)
} else if(! is.character(target)){
stop("input not class character")
}
if(length(target) > 1){
warning("too many inputs, only the first was kept")
target <- target[1]
}
if(! grepl("^[a-zA-Z_0-9\\s]+$", target, perl=T))
stop("invalid input: must contain only alphanumerics and/or whitespace")
queryResult <- .cidsByTarget(database, target)
if(nrow(queryResult) == 0){ return(NA) }
queryByCid <- split(queryResult$'activity', queryResult$'cid')
resultByCid <- t(sapply(queryByCid, function(x){
x <- x[! is.na(x)]
c(sum(x)/length(x), length(x))
}))
resultByCid <- resultByCid[resultByCid[,1] > 0,,drop=F]
if(nrow(resultByCid) == 0){ return (NA) }
resultByCid <- resultByCid[!is.na(rownames(resultByCid)),,drop=F]
if(nrow(resultByCid) == 0){ return (NA) }
colnames(resultByCid) <- c("fraction_active", "total_assays")
return(resultByCid)
}
# takes a target id and returns compounds ordered by decreasing selectivity for
# this target
selectiveAgainst <- function(database, target, maxCompounds = 10, minimumTargets = 10){
if(class(database) != "BioassayDB")
stop("database not of class BioassayDB")
if(is.numeric(target)){
target <- as.character(target)
} else if(! is.character(target)){
stop("input not class character")
}
if(length(target) > 1){
warning("too many inputs, only the first was kept")
target <- target[1]
}
if(! grepl("^[a-zA-Z_0-9\\s]+$", target, perl=T))
stop("invalid input: must contain only alphanumerics and/or whitespace")
if(! is.numeric(maxCompounds))
stop("non numeric maxCompounds input")
if(! is.numeric(minimumTargets))
stop("non numeric minimumTargets input")
activeCids <- unique(.cidsByTarget(database, target, activeOnly = TRUE)$cid)
if(length(activeCids) == 0){ return(NA) }
targetSums <- t(sapply(activeCids, function(cid){
queryResult <- .targetsByCid(database, cid)
queryByCid <- split(queryResult$'activity', queryResult$'target')
resultByCid <- t(sapply(queryByCid, function(x){
x <- x[! is.na(x)]
c(sum(x), length(x))
}))
c(sum(resultByCid[,1] > 0), length(rownames(resultByCid)))
}))
if(dim(targetSums)[2] == 0){ return(NA) }
row.names(targetSums) <- activeCids
colnames(targetSums) <- c("active_targets", "tested_targets")
targetSums <- targetSums[targetSums[,2] >= minimumTargets,,drop=F]
if(dim(targetSums)[1] == 0){ return(NA) }
targetSums <- targetSums[order(targetSums[,1], targetSums[,2], na.last = NA),,drop=F]
if(dim(targetSums)[1] > maxCompounds){
targetSums <- targetSums[1:maxCompounds,]
}
return(targetSums)
}
# This takes a bioassaySet of multiple assays and returns
# a vector of the targets of each, with the assay identifiers themselves (aids)
# as names. If a single assay contains multiple targets, these will all be listed.
assaySetTargets <- function(assays){
# check input sanity
if(class(assays) != "bioassaySet")
stop("database not of class bioassaySet")
targetMatrix <- slot(assays, "targets")
targetCoords <- which(targetMatrix == 1, arr.ind=TRUE)
assayTargets <- colnames(targetMatrix)[targetCoords[,2]]
names(assayTargets) <- rownames(targetMatrix)[targetCoords[,1]]
return(assayTargets)
}
# This takes a bioassaySet of multiple assays, and returns one with a single score
# per target- collapsing multiple assays against distinct targets into a single assay
# values if useNumericScores = FALSE:
# 0 = untested or inconclusive
# 1 = inactive
# 2 = active in 1 or more assays (can still be inactive in some)
perTargetMatrix <- function(assays, inactives = TRUE, assayTargets = FALSE, targetOrder = FALSE, summarizeReplicates = "activesFirst", useNumericScores = FALSE){
# check input sanity
if(class(assays) != "bioassaySet")
stop("database not of class bioassaySet")
if(class(inactives) != "logical")
stop("inactives option not of class logical (TRUE or FALSE)")
if(! is.logical(assayTargets) && (class(assayTargets) != "character"))
stop("assayTargets not of class character")
if(is.logical(targetOrder) && isTRUE(targetOrder))
stop("TRUE is an invalid option for targetOrder- it must be FALSE or character")
if(! is.logical(targetOrder) && (class(targetOrder) != "character"))
stop("targetOrder not of class character")
if(is.logical(targetOrder) && isTRUE(targetOrder))
stop("TRUE is an invalid option for targetOrder- it must be FALSE or character")
if(class(summarizeReplicates) != "function" && class(summarizeReplicates) != "standardGeneric")
if(summarizeReplicates != "mode" && summarizeReplicates != "activesFirst")
stop("invalid conflict resolver option")
if(class(useNumericScores) != "logical")
stop("useNumericScores option not of class logical (TRUE or FALSE)")
# message("Note: in this version active scores now use a 2 instead of a 1")
if(useNumericScores){
# assays <- scaleBioassaySet(getAssays(db, c(348, 360, 368))) # test code
activityMatrix <- assays@scores
tMatrix <- as(activityMatrix, "TsparseMatrix")
i <- tMatrix@i
j <- tMatrix@j
x <- tMatrix@x
x[x == "NaN"] <- 0
sortIndex <- sort.int(abs(x), decreasing=T, index.return=T)$ix
i <- i[sortIndex]
j <- j[sortIndex]
x <- x[sortIndex]
coords <- cbind(i+1, j+1, x)
coords <- coords[!is.na(coords[,3]),]
} else {
# Get coordinates of scores
# NOTE: inactives must come after active values
# for later duplicate removal to give preference to active scores
activityMatrix <- slot(assays, "activity")
coords <- which(activityMatrix == 2, arr.ind=TRUE)
suppressWarnings(coords <- cbind(coords,2))
if(inactives){
inactiveCoords <- which(activityMatrix == 1, arr.ind=TRUE)
suppressWarnings(inactiveCoords <- cbind(inactiveCoords,1))
coords <- rbind(coords, inactiveCoords)
}
}
# get assay to target mappings
if(is.logical(assayTargets)){
assayTargets <- assaySetTargets(assays)
}
# get target/cid pairs per assay and drop those without targets
targetsPerAssay <- assayTargets[as.character(rownames(activityMatrix)[coords[,1]])]
cidsPerAssay <- colnames(activityMatrix)[coords[,2]]
cidsPerAssay <- cidsPerAssay[! is.na(targetsPerAssay)]
activityScores <- coords[,3][! is.na(targetsPerAssay)]
targetsPerAssay <- targetsPerAssay[! is.na(targetsPerAssay)]
if(class(summarizeReplicates) == "character")
if(summarizeReplicates == "mode")
summarizeReplicates <- function(x) { as.numeric(names(which.max(table(x)))) }
if(class(summarizeReplicates) != "character"){
# identify cid/target pairs that are duplicated and resolve according to specified rule
mergedPairs <- paste(cidsPerAssay, targetsPerAssay, sep="______")
duplicatedPairs <- duplicated(mergedPairs) | duplicated(mergedPairs, fromLast=TRUE)
if(sum(duplicatedPairs) > 0){
pairFactor <- factor(mergedPairs[duplicatedPairs], levels=unique(mergedPairs[duplicatedPairs]))
splitScores <- split(activityScores[duplicatedPairs], pairFactor)
resolvedScores <- sapply(splitScores, summarizeReplicates)
firstDuplicates <- duplicated(mergedPairs, fromLast=TRUE) & !duplicated(mergedPairs)
activityScores[firstDuplicates] <- resolvedScores
}
}
# make cid/target pairs unique
nonDuplicates <- ! duplicated(paste(cidsPerAssay, targetsPerAssay, sep="______"))
cidsPerAssay <- cidsPerAssay[nonDuplicates]
targetsPerAssay <- targetsPerAssay[nonDuplicates]
activityScores <- activityScores[nonDuplicates]
# get unique values for cols and rows
if(is.logical(targetOrder)){
uniqueTargets <- unique(targetsPerAssay)
} else {
uniqueTargets <- targetOrder
inTargetList <- targetsPerAssay %in% targetOrder
targetsPerAssay <- targetsPerAssay[inTargetList]
cidsPerAssay <- cidsPerAssay[inTargetList]
activityScores <- activityScores[inTargetList]
}
uniqueCids <- unique(cidsPerAssay)
# return matrix
sparseMatrix(
i = match(targetsPerAssay, uniqueTargets),
j = match(cidsPerAssay, uniqueCids),
x = activityScores,
dims = c(length(uniqueTargets), length(uniqueCids)),
dimnames = list(uniqueTargets, uniqueCids),
symmetric = FALSE,
index1 = TRUE)
}
# this takes a list of compound ids (cids) and returns a bioassaySet object
# with only the activity of those compounds listed
getBioassaySetByCids <- function(database, cids){
# check input sanity
if(class(database) != "BioassayDB")
stop("database not of class BioassayDB")
if(is.numeric(cids)){
cids <- as.character(cids)
} else if(! is.character(cids)){
stop("cids not class numeric or character")
}
if(length(unique(cids)) != length(cids)){
stop("cid list contains duplicates")
}
# create activity and score matrix
result <- .activityByCids(database, cids)
uniqueAssays <- unique(result$aid)
uniqueCids <- unique(result$cid)
activity <- sparseMatrix(
i = match(result$aid, uniqueAssays),
j = match(result$cid, uniqueCids),
x = result$activity + 1,
dims = c(length(uniqueAssays), length(uniqueCids)),
dimnames = list(uniqueAssays, uniqueCids),
symmetric = FALSE,
index1 = TRUE)
scores <- sparseMatrix(
i = match(result$aid, uniqueAssays),
j = match(result$cid, uniqueCids),
x = result$score,
dims = c(length(uniqueAssays), length(uniqueCids)),
dimnames = list(uniqueAssays, uniqueCids),
symmetric = FALSE,
index1 = TRUE)
aids <- uniqueAssays
# create target matrix
resultTargets <- .targetsByAids(database, aids)
uniqueTargets <- unique(resultTargets$target)
targets <- sparseMatrix(
i = match(resultTargets$aid, uniqueAssays),
j = match(resultTargets$target, uniqueTargets),
x = 1,
dims = c(length(uniqueAssays), length(uniqueTargets)),
dimnames = list(uniqueAssays, uniqueTargets),
symmetric = FALSE,
index1 = TRUE)
target_types <- resultTargets$target_type
names(target_types) <- resultTargets$aid
# get data sources
resultSource <- .sourcesByAids(database, aids)
# get assay annotation
resultAnnotation <- .assaysByAids(database, aids)
source_id <- resultAnnotation$source_id
names(source_id) <- resultAnnotation$aid
assay_type <- resultAnnotation$assay_type
names(assay_type) <- resultAnnotation$aid
organism <- resultAnnotation$organism
names(organism) <- resultAnnotation$aid
scoring <- resultAnnotation$scoring
names(scoring) <- resultAnnotation$aid
# create bioassaySet object
new("bioassaySet",
activity = activity,
scores = scores,
targets = targets,
sources = resultSource,
source_id = source_id,
assay_type = assay_type,
organism = organism,
scoring = scoring,
target_types = target_types)
}
# this takes a list of assay ids (aids) and returns a bioassaySet object
getAssays <- function(database, aids){
# check input sanity
if(class(database) != "BioassayDB")
stop("database not of class BioassayDB")
if(is.numeric(aids)){
aids <- as.character(aids)
} else if(! is.character(aids)){
stop("aids not class numeric or character")
}
# create activity and score matrix
result <- .activityByAids(database, aids)
uniqueAssays <- unique(result$aid)
uniqueCids <- unique(result$cid)
activity <- sparseMatrix(
i = match(result$aid, uniqueAssays),
j = match(result$cid, uniqueCids),
x = result$activity + 1,
dims = c(length(uniqueAssays), length(uniqueCids)),
dimnames = list(uniqueAssays, uniqueCids),
symmetric = FALSE,
index1 = TRUE)
scores <- sparseMatrix(
i = match(result$aid, uniqueAssays),
j = match(result$cid, uniqueCids),
x = result$score,
dims = c(length(uniqueAssays), length(uniqueCids)),
dimnames = list(uniqueAssays, uniqueCids),
symmetric = FALSE,
index1 = TRUE)
# create target matrix
resultTargets <- .targetsByAids(database, aids)
uniqueTargets <- unique(resultTargets$target)
targets <- sparseMatrix(
i = match(resultTargets$aid, uniqueAssays),
j = match(resultTargets$target, uniqueTargets),
x = 1,
dims = c(length(uniqueAssays), length(uniqueTargets)),
dimnames = list(uniqueAssays, uniqueTargets),
symmetric = FALSE,
index1 = TRUE)
target_types <- resultTargets$target_type
names(target_types) <- resultTargets$aid
# get data sources
resultSource <- .sourcesByAids(database, aids)
# get assay annotation
resultAnnotation <- .assaysByAids(database, aids)
source_id <- resultAnnotation$source_id
names(source_id) <- resultAnnotation$aid
assay_type <- resultAnnotation$assay_type
names(assay_type) <- resultAnnotation$aid
organism <- resultAnnotation$organism
names(organism) <- resultAnnotation$aid
scoring <- resultAnnotation$scoring
names(scoring) <- resultAnnotation$aid
# create bioassaySet object
new("bioassaySet",
activity = activity,
scores = scores,
targets = targets,
sources = resultSource,
source_id = source_id,
assay_type = assay_type,
organism = organism,
scoring = scoring,
target_types = target_types)
}
# this takes an assay id (aid) and returns a bioassay object for the corresponding assay
getAssay <- function(database, aid){
if(class(database) != "BioassayDB")
stop("database not of class BioassayDB")
if(is.numeric(aid)){
aid <- as.character(aid)
} else if(! is.character(aid)){
stop("input not class character")
}
if(length(aid) > 1){
warning("too many inputs, only the first was kept")
aid <- aid[1]
}
if(! grepl("^[a-zA-Z_0-9\\s]+$", aid, perl=T))
stop("invalid input: must contain only alphanumerics and/or whitespace")
aid <- as.character(aid)
assay <- queryBioassayDB(database, paste("SELECT * FROM assays WHERE aid =", aid))
if(nrow(assay) < 1){
stop("assay not found")
}
source_id <- queryBioassayDB(database, paste("SELECT description FROM assays NATURAL JOIN sources WHERE aid =", aid))$description
target_list <- queryBioassayDB(database, paste("SELECT * FROM targets WHERE aid =", aid))
targets <- target_list$target
target_types <- target_list$target_type
scores <- queryBioassayDB(database, paste("SELECT cid, activity, score FROM activity WHERE aid =", aid))
new("bioassay",
aid = aid,
source_id = source_id,
assay_type = assay$assay_type,
organism = assay$organism,
scoring = assay$scoring,
targets = targets,
target_types = target_types,
scores = scores
)
}
# takes cids and a database and returns the target selectivity of the query cids
# scoring method is either as total active targets or fraction of active targets
targetSelectivity <- function(database, cids, scoring="total", category=FALSE, multiTarget="keepOne"){
if(class(database) != "BioassayDB")
stop("'database' not of class 'BioassayDB'")
if(is.numeric(cids)){
cids <- as.character(cids)
} else if(! is.character(cids)){
stop("'cids' not class 'character'")
}
if(! scoring %in% c("total", "fraction")){
stop("'scoring' must be one of the following: total or fraction")
}
allCategories <- .allCategories(database)
if(is.logical(category) && category)
stop(paste(c("'category' must be either 'FALSE' or an available translation category.
valid options: FALSE", allCategories), collapse=" "))
if(! is.logical(category) && (! category %in% allCategories))
stop(paste(c("'category' must be either 'FALSE' or an available translation category.
valid options: FALSE", allCategories), collapse=" "))
if((multiTarget != "drop") && (multiTarget != "keepOne") && (multiTarget != "all"))
stop("multiTarget must be one of the following: drop, keepOne, all")
return(sapply(cids, function(cid){
activityData <- .targetsByCid(database, cid)
if(multiTarget == "drop"){
duplicatedAids <- activityData$aid[duplicated(activityData$aid)]
activityData <- activityData[! activityData$aid %in% duplicatedAids,,drop=F]
}
if(multiTarget == "keepOne"){
duplicatedRows <- duplicated(activityData$aid)
dropAidTarget <- paste(activityData$aid[duplicatedRows], activityData$target[duplicatedRows], sep="______")
activityData <- activityData[! duplicatedRows,,drop=F]
}
if(! is.logical(category)){
categoryTargets <- .targetsByCid(database, cid, category=category)
if(multiTarget == "drop"){
categoryTargets <- categoryTargets[! categoryTargets$aid %in% duplicatedAids,]
}
if(multiTarget == "keepOne"){
aidTargetByRow <- paste(categoryTargets$aid, categoryTargets$target, sep="______")
categoryTargets <- categoryTargets[! aidTargetByRow %in% dropAidTarget,,drop=F]
}
# put active scores first in list
categoryTargets <- categoryTargets[sort(categoryTargets$activity, decreasing=TRUE, index.return=T)$ix,,drop=F]
# remove any duplicated target plus identifier rows
targetAndIdentifer <- paste(categoryTargets$target, categoryTargets$identifier, sep="______")
categoryTargets <- categoryTargets[! duplicated(targetAndIdentifer),,drop=F]
# get list of all duplicated identifiers
categoryDuplicates <- unique(categoryTargets$target[duplicated(categoryTargets$identifier)])
# remove duplicated target identifiers from inital activityData table
activityData <- activityData[! activityData$target %in% categoryDuplicates,,drop=F]
}
activeTargetIds <- unique(activityData$target[activityData$activity == 1])
if(scoring == "total"){
return(length(activeTargetIds))
} else {
inactiveTargetIds <- unique(activityData$target[activityData$activity == 0])
inactiveTargetIds <- inactiveTargetIds[! inactiveTargetIds %in% activeTargetIds]
return(length(activeTargetIds)/(length(activeTargetIds)+length(inactiveTargetIds)))
}
}))
}
# takes a minimum number of distinct protein targets
# and returns all CIDs screened against at least that many proteins
screenedAtLeast <- function(database, minTargets, inconclusives=TRUE){
if(class(database) != "BioassayDB")
stop("'database' not of class 'BioassayDB'")
if(class(minTargets) != "numeric")
stop("'minTargets' not of class 'numeric'")
if(class(inconclusives) != "logical")
stop("inconclusives option not of class logical (TRUE or FALSE)")
counts <- .screenedAtLeast(database, minTargets, inconclusives)
return(counts$cid[! is.na(counts$cid)])
}
# takes a target identifier and category and returns its translation
# to another target type
translateTargetId <- function(database, target, category, fromCategory="GI"){
if(class(database) != "BioassayDB")
stop("'database' not of class 'BioassayDB'")
allCategories <- c("GI", .allCategories(database))
if(! category %in% allCategories)
stop(paste(c("'category' must be an available translation category.
valid options: ", allCategories), collapse=" "))
if(! fromCategory %in% allCategories)
stop(paste(c("'fromCategory' must be an available translation category.
valid options: ", allCategories), collapse=" "))
if(length(target) > 1)
stop("'target' has length greater than 1, use lapply to run multiple queries")
if(fromCategory != "GI")
targetGIs <- unique(.reverseTranslateTargetId(database, target, fromCategory))
else
targetGIs <- target
if(category == "GI")
result <- targetGIs
else
result <- unique(unlist(lapply(targetGIs, .translateTargetId, database=database, category=category)))
if(length(result) == 0)
result <- NA
return(result)
}
###########
# queries #
###########
.allCids <- function(database, activesOnly = FALSE){
if(activesOnly){
queryString <- " AND activity == 1"
} else {
queryString <- ""
}
queryBioassayDB(database, paste(
"SELECT DISTINCT cid FROM activity WHERE cid NOT NULL",
queryString,
sep = ""
))
}
.allTargets <- function(database){
queryBioassayDB(database,
"SELECT DISTINCT target FROM targets WHERE target NOT NULL")
}
.translateTargetId <- function(database, target, category){
queryBioassayDB(database, paste(
"SELECT identifier",
" FROM targetTranslations",
" WHERE target = '", target, "'",
" AND category = '", category, "'",
sep=""))[[1]]
}
.reverseTranslateTargetId <- function(database, identifier, category){
queryBioassayDB(database, paste(
"SELECT target",
" FROM targetTranslations",
" WHERE identifier = '", identifier, "'",
" AND category = '", category, "'",
sep=""))[[1]]
}
.screenedAtLeast <- function(database, minTargets, inconclusives){
if(inconclusives){
queryString <- paste(
"SELECT cid, COUNT(DISTINCT(target)) AS distinctTargets",
" FROM activity",
" NATURAL JOIN targets",
" GROUP BY cid",
" HAVING distinctTargets >= ", minTargets, sep="")
} else {
queryString <- paste(
"SELECT cid, COUNT(DISTINCT(target)) AS distinctTargets",
" FROM activity",
" NATURAL JOIN targets",
" WHERE activity NOT NULL",
" GROUP BY cid",
" HAVING distinctTargets >= ", minTargets, sep="")
}
queryBioassayDB(database, queryString)
}
.targetsByAids <- function(database, aids){
con <- slot(database, "database")
sql <- paste("SELECT * FROM targets WHERE aid = $AID")
dbBegin(con)
result <- dbGetPreparedQuery(con, sql, bind.data = data.frame(AID=aids))
dbCommit(con)
return(result)
}
.activityByAids <- function(database, aids){
con <- slot(database, "database")
sql <- paste("SELECT * FROM activity WHERE aid = $AID")
dbBegin(con)
result <- dbGetPreparedQuery(con, sql, bind.data = data.frame(AID=aids))
dbCommit(con)
return(result)
}
.activityByCids <- function(database, cids){
con <- slot(database, "database")
sql <- paste("SELECT * FROM activity WHERE cid = $CID")
dbBegin(con)
result <- dbGetPreparedQuery(con, sql, bind.data = data.frame(CID=cids))
dbCommit(con)
return(result)
}
.assaysByAids <- function(database, aids){
con <- slot(database, "database")
sql <- paste("SELECT * FROM assays WHERE aid = $AID")
dbBegin(con)
result <- dbGetPreparedQuery(con, sql, bind.data = data.frame(AID=aids))
dbCommit(con)
return(result)
}
.sourcesByAids <- function(database, aids){
con <- slot(database, "database")
sql <- paste("SELECT DISTINCT source_id, description, version FROM assays NATURAL JOIN sources WHERE aid = $AID")
dbBegin(con)
result <- dbGetPreparedQuery(con, sql, bind.data = data.frame(AID=aids))
dbCommit(con)
result[unique(result$source_id),]
}
.allCategories <- function(database){
queryBioassayDB(database, "SELECT DISTINCT category FROM targetTranslations")[[1]]
}
# Performance: indexes activity_cid, and targets_aid provide ~12x speedup
.targetsByCid <- function(database, cid, activity = "NOT NULL", category=FALSE){
if(activity != "NOT NULL"){
activity <- paste("= '", activity, "'", sep="")
}
if(! is.logical(category)){
sql <- paste(
"SELECT activity.aid, activity.activity, targets.target, targetTranslations.identifier",
" FROM activity",
" NATURAL JOIN targets",
" NATURAL JOIN targetTranslations",
" WHERE activity.cid = '", cid, "'",
" AND activity.activity ", activity,
" AND targetTranslations.category = '", category, "'",
sep = ""
)
} else {
sql <- paste(
"SELECT activity.aid, activity.activity, targets.target",
" FROM activity",
" NATURAL JOIN targets",
" WHERE activity.cid = '", cid, "'",
" AND activity.activity ", activity,
sep = ""
)
}
queryBioassayDB(database, sql)
}
# Performance: indexes targets_target, activity_aid provide MASSIVE speedup
.cidsByTarget <- function(database, target, activeOnly = FALSE){
if(activeOnly){
queryString <- " AND activity.activity = 1"
} else {
queryString <- ""
}
queryBioassayDB(database, paste(
"SELECT activity.aid, activity.activity, activity.cid",
" FROM targets",
" NATURAL JOIN activity",
" WHERE targets.target = '", target, "'",
queryString,
sep = ""
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.