Description Usage Arguments Value Examples
Compare scRNA-seq data to reference data.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | clustify(input, ...)
## Default S3 method:
clustify(
input,
ref_mat,
metadata = NULL,
cluster_col = NULL,
query_genes = NULL,
per_cell = FALSE,
n_perm = 0,
compute_method = "spearman",
verbose = FALSE,
lookuptable = NULL,
rm0 = FALSE,
obj_out = TRUE,
seurat_out = TRUE,
rename_prefix = NULL,
threshold = "auto",
low_threshold_cell = 0,
exclude_genes = c(),
if_log = TRUE,
...
)
## S3 method for class 'seurat'
clustify(
input,
ref_mat,
cluster_col = NULL,
query_genes = NULL,
per_cell = FALSE,
n_perm = 0,
compute_method = "spearman",
use_var_genes = TRUE,
dr = "umap",
seurat_out = TRUE,
obj_out = TRUE,
threshold = "auto",
verbose = FALSE,
rm0 = FALSE,
rename_prefix = NULL,
exclude_genes = c(),
...
)
## S3 method for class 'Seurat'
clustify(
input,
ref_mat,
cluster_col = NULL,
query_genes = NULL,
per_cell = FALSE,
n_perm = 0,
compute_method = "spearman",
use_var_genes = TRUE,
dr = "umap",
seurat_out = TRUE,
obj_out = TRUE,
threshold = "auto",
verbose = FALSE,
rm0 = FALSE,
rename_prefix = NULL,
exclude_genes = c(),
...
)
## S3 method for class 'SingleCellExperiment'
clustify(
input,
ref_mat,
cluster_col = NULL,
query_genes = NULL,
per_cell = FALSE,
n_perm = 0,
compute_method = "spearman",
use_var_genes = TRUE,
dr = "umap",
seurat_out = TRUE,
obj_out = TRUE,
threshold = "auto",
verbose = FALSE,
rm0 = FALSE,
rename_prefix = NULL,
exclude_genes = c(),
...
)
|
input |
single-cell expression matrix or Seurat object |
... |
additional arguments to pass to compute_method function |
ref_mat |
reference expression matrix |
metadata |
cell cluster assignments,
supplied as a vector or data.frame.
If data.frame is supplied then |
cluster_col |
column in metadata that contains cluster ids per cell. Will default to first column of metadata if not supplied. Not required if running correlation per cell. |
query_genes |
A vector of genes of interest to compare. If NULL, then common genes between the expr_mat and ref_mat will be used for comparision. |
per_cell |
if true run per cell, otherwise per cluster. |
n_perm |
number of permutations, set to 0 by default |
compute_method |
method(s) for computing similarity scores |
verbose |
whether to report certain variables chosen |
lookuptable |
if not supplied, will look in built-in table for object parsing |
rm0 |
consider 0 as missing data, recommended for per_cell |
obj_out |
whether to output object instead of cor matrix |
seurat_out |
output cor matrix or called seurat object (deprecated, use obj_out instead) |
rename_prefix |
prefix to add to type and r column names |
threshold |
identity calling minimum correlation score threshold, only used when obj_out = TRUE |
low_threshold_cell |
option to remove clusters with too few cells |
exclude_genes |
a vector of gene names to throw out of query |
if_log |
input data is natural log, averaging will be done on unlogged data |
use_var_genes |
if providing a seurat object, use the variable genes (stored in seurat_object@var.genes) as the query_genes. |
dr |
stored dimension reduction |
single cell object with identity assigned in metadata, or matrix of correlation values, clusters from input as row names, cell types from ref_mat as column names
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | # Annotate a matrix and metadata
clustify(
input = pbmc_matrix_small,
metadata = pbmc_meta,
ref_mat = cbmc_ref,
query_genes = pbmc_vargenes,
cluster_col = "classified",
verbose = TRUE
)
# Annotate using a different method
clustify(
input = pbmc_matrix_small,
metadata = pbmc_meta,
ref_mat = cbmc_ref,
query_genes = pbmc_vargenes,
cluster_col = "classified",
compute_method = "cosine"
)
# Annotate a Seurat object
clustify(
s_small,
cbmc_ref,
cluster_col = "res.1",
obj_out = TRUE,
per_cell = FALSE,
dr = "tsne"
)
# Annotate (and return) a Seurat object per-cell
clustify(
input = s_small,
ref_mat = cbmc_ref,
cluster_col = "res.1",
obj_out = TRUE,
per_cell = TRUE,
dr = "tsne"
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.