deriv2LagrangianFeatures: The score function to estimate the latent variables

Description Usage Arguments Value

View source: R/deriv2LagrangianFeatures.R

Description

The score function to estimate the latent variables

Usage

1
2
3
deriv2LagrangianFeatures(x, data, distribution, offSet, latentVars, numVar,
  paramEstsLower, mm, Jac, meanVarTrend, weights, compositional,
  indepModel, ...)

Arguments

x

parameter estimates

data

A list of data matrices

distribution, compositional, meanVarTrend, offSet, numVar

Characteristics of the view

latentVars

A vector of latent variables

paramEstsLower

lower dimension estimates

mm

the current dimension

Jac

a prefab jacobian

weights

The normalization weights

indepModel

the independence model

...

Additional arguments passed on to the score and jacobian functions

Value

A vector of length n, the evaluation of the score functions of the latent variables


combi documentation built on Nov. 8, 2020, 5:34 p.m.