Nothing
# LOESS FUNCTIONS
loessFit <- function(y, x, weights=NULL, span=0.3, iterations=4L, min.weight=1e-5, max.weight=1e5, equal.weights.as.null=TRUE, method="weightedLowess")
# Fast lowess fit for univariate x and y allowing for weights
# Uses lowess() if weights=NULL and weightedLowess(), locfit.raw() or loess() otherwise
# Gordon Smyth
# 28 June 2003. Last revised 14 January 2015.
{
# Check x and y
n <- length(y)
if(length(x) != n) stop("y and x have different lengths")
out <- list(fitted=rep(NA,n),residuals=rep(NA,n))
obs <- is.finite(y) & is.finite(x)
xobs <- x[obs]
yobs <- y[obs]
nobs <- length(yobs)
# If no good obs, exit straight away
if(nobs==0) return(out)
# Check span
if(span < 1/nobs) {
out$fitted[obs] <- y[obs]
out$residuals[obs] <- 0
return(out)
}
# Check min.weight
if(min.weight<0) min.weight <- 0
# Check weights
if(!is.null(weights)) {
if(length(weights) != n) stop("y and weights have different lengths")
wobs <- weights[obs]
wobs[is.na(wobs)] <- 0
wobs <- pmax(wobs,min.weight)
wobs <- pmin(wobs,max.weight)
# If weights all equal, treat as NULL
if(equal.weights.as.null) {
r <- range(wobs)
if(r[2]-r[1] < 1e-15) weights <- NULL
}
}
# If no weights, so use classic lowess algorithm
if(is.null(weights)) {
o <- order(xobs)
lo <- lowess(x=xobs,y=yobs,f=span,iter=iterations-1L)
out$fitted[obs][o] <- lo$y
out$residuals[obs] <- yobs-out$fitted[obs]
return(out)
}
# Count number of observations with positive weights (must always be positive)
if(min.weight>0)
nwobs <- nobs
else
nwobs <- sum(wobs>0)
# Check whether too few obs to estimate lowess curve
if(nwobs < 4+1/span) {
if(nwobs==1L) {
out$fitted[obs] <- yobs[wobs>0]
out$residuals[obs] <- yobs-out$fitted[obs]
} else {
fit <- lm.wfit(cbind(1,xobs),yobs,wobs)
out$fitted[obs] <- fit$fitted
out$residuals[obs] <- fit$residuals
}
return(out)
}
# Need to compute lowess with unequal weights
method <- match.arg(method, c("weightedLowess","locfit","loess"))
switch(method,
"weightedLowess" = {
fit <- weightedLowess(x=xobs,y=yobs,weights=wobs,span=span,iterations=iterations,npts=200)
out$fitted[obs] <- fit$fitted
out$residuals[obs] <- fit$residuals
},
"locfit" = {
# Check for locfit package
if(!requireNamespace("locfit",quietly=TRUE)) stop("locfit required but is not installed (or can't be loaded)")
# Weighted lowess with robustifying iterations
biweights <- rep(1,nobs)
for (i in 1:iterations) {
fit <- locfit::locfit(yobs~xobs,weights=wobs*biweights,alpha=span,deg=1)
res <- residuals(fit,type="raw")
s <- median(abs(res))
biweights <- pmax(1-(res/(6*s))^2,0)^2
}
out$fitted[obs] <- fitted(fit)
out$residuals[obs] <- res
},
"loess" = {
# Suppress warning "k-d tree limited by memory"
oldopt <- options(warn=-1)
on.exit(options(oldopt))
bin <- 0.01
fit <- loess(yobs~xobs,weights=wobs,span=span,degree=1,parametric=FALSE,normalize=FALSE,statistics="approximate",surface="interpolate",cell=bin/span,iterations=iterations,trace.hat="approximate")
out$fitted[obs] <- fit$fitted
out$residuals[obs] <- fit$residuals
}
)
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.