Nothing
#' Simulate causal SNPs
#'
#' @description Selects randomly interconnected genes as causal, then selects a
#' proportion of them as causal.
#'
#' @param net An igraph gene-interaction (GI) network that connects the SNPs.
#' @param ngenes Number of causal genes.
#' @param pcausal Number between 0 and 1, proportion of the SNPs in causal genes
#' that are causal themselves.
#' @return A vector with the ids of the simulated causal SNPs.
#' @importFrom igraph components V neighbors %>%
#' @importFrom stats na.omit
#' @examples
#' gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
#' simulate_causal_snps(gi, ngenes=2)
#' @export
simulate_causal_snps <- function(net, ngenes = 20, pcausal = 1) {
# SNPs with only one gene
subnet <- subnet(net, "nGenes", 1)
# genes with more than 1 SNP
genes <- names(which(table(V(subnet)$gene) > 5))
repeat {
g <- sample(genes, 1)
seed <- subvert(subnet, "gene", g)[1]
causalGenes <- neighbors(subnet,seed)$gene %>% na.omit %>% unique
causalGenes <- c(causalGenes, g)
causalNetwork <- lapply(causalGenes, function(s) {
subvert(subnet, "gene", s)$gene
}) %>% unlist %>% table
causalGenes <- causalNetwork[causalNetwork > ngenes/4] %>% names %>%
intersect(genes) %>% head(ngenes)
if ( length(causalGenes) >= ngenes ) {
causal <- subvert(subnet, "gene", causalGenes)
# sample a proportion pcausal of the snps in the causal genes
causal <- sample(causal, length(causal) * pcausal)
# check that we have at most two subnetworks
if (components(subnet(net, "name", names(causal)))$no <= 2) {
break
}
}
}
# get the nodes from the original net
causal <- subvert(net, "name", names(causal))
return(causal)
}
#' Simulate phenotype
#'
#' @description Simulates a phenotype from a GWAS experiment and a specified set
#' of causal SNPs. If the data is qualitative, only controls are used.
#'
#' @param gwas A SnpMatrix object with the GWAS information.
#' @param snps Character vector with the SNP ids of the causal SNPs. Must match
#' SNPs in gwas[["map"]][["snp.names"]].
#' @param h2 Heritability of the phenotype (between 0 and 1).
#' @param model String specifying the genetic model under the phenotype.
#' Accepted values: "additive".
#' @param effectSize Numeric vector with the same lenght as the number of causal
#' SNPs. It indicates the effect size of each of the SNPs; if absent, they are
#' sampled fron a normal distribution.
#' @param qualitative Bool indicating if the phenotype is qualitative or not
#' (quantitative).
#' @param ncases Integer specifying the number of cases to simulate in a
#' qualitative phenotype. Required if qualitative = TRUE.
#' @param ncontrols Integer specifying the number of controls to simulate in a
#' qualitative phenotype. Required if qualitative = TRUE.
#' @param prevalence Value between 0 and 1 specifying the population prevalence
#' of the disease. Note that ncases cannot be greater than
#' prevalence * number of samples. Required if qualitative = TRUE.
#' @return A copy of the GWAS experiment with the new phenotypes in
#' \code{gwas[["fam"]][["affected"]]}.
#' @references Inspired from GCTA simulation tool:
#' \url{http://cnsgenomics.com/software/gcta/Simu.html}.
#' @importClassesFrom snpStats SnpMatrix
#' @importFrom stats rnorm var
#' @importFrom utils head tail
#' @examples
#' gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
#' causal <- simulate_causal_snps(gi, ngenes = 2)
#' simulate_phenotype(minigwas, causal, h2 = 1)
#' @export
simulate_phenotype <- function(gwas, snps, h2, model = "additive",
effectSize = rnorm(length(snps)),
qualitative = FALSE,
ncases, ncontrols, prevalence){
# select only controls
binary <- (unique(gwas[["fam"]][["affected"]]) %>% length) == 2
if (binary) {
gwas[["genotypes"]] <- gwas[["genotypes"]][gwas[["fam"]][["affected"]]==1, ]
gwas[["fam"]] <- gwas[["fam"]][gwas[["fam"]][["affected"]] == 1, ]
}
X <- as(gwas[["genotypes"]], "numeric")
if (any(! names(snps) %in% gwas[["map"]][["snp.names"]])) {
stop(paste("The following causal SNPs are not in the SNP list:",
paste(setdiff(names(snps), gwas[["map"]][["snp.names"]]),
collapse = ",")))
}
if (h2 < 0 | h2 > 1) {
stop(paste0("h2 must be between 0 and 1. Current value is ", h2, "."))
}
X <- X[, names(snps)]
G <- calculateG(effectSize, X, model)
E <- calculateE(G, h2)
Y <- G + E
if (qualitative){
if ( length(Y) < (ncases + ncontrols) ) {
stop("Requested number of cases and controls too high (> # samples).")
} else if ( prevalence * length(Y) < ncases ) {
stop("Requested number of cases too high (> # samples * prevalence).")
}
Y.sorted <- sort(Y, index.return = TRUE)
cases <- head(Y.sorted[['ix']], n = ncases)
controls <- tail(Y.sorted[['ix']], n = ncontrols)
Y[cases] <- 2
Y[controls] <- 1
Y[-c(cases,controls)] <- NA
}
gwas[["fam"]][["affected"]] <- Y
return(gwas)
}
#' Calculate the genetic component of the phenotype
#'
#' @description Calculates the genetic component of the phenotype from a
#' genotype.
#'
#' @param effectSize A vector with the effect size of each SNP.
#' @param X Genotypes in a numeric matrix, where each row is a sample and each
#' column a SNP.
#' @param model Genetic model to assume.
#' @return A vector with the genetic component of each sample.
#' @keywords internal
calculateG <- function(effectSize, X, model) {
X <- t(X)
# calculate weights w
p <- (2 * rowSums(X == 0) + rowSums(X == 1)) / (2 * ncol(X))
x <- 2 * (X == 0) + (X == 1)
w <- (x - 2 * p) / sqrt(2 * p * (1 - p))
if (model == "additive") {
G <- colSums(w * effectSize)
} else {
stop(paste0("Genetic model ", model, " not recognised."))
}
return(G)
}
#' Calculate the environmental component of the phenotype
#'
#' @description Calculates the environmental component of the phenotype using
#' the variance in the genetic component.
#'
#' @param G The genetic component of the phenotype.
#' @param h2 The heritability.
#' @return A vector with the environmental component of each sample.
#' @keywords internal
calculateE <- function(G, h2) {
residual.var <- var(G) * (1/h2 - 1)
residual <- rnorm(length(G), sd = sqrt(residual.var))
return(residual)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.