Nothing
#' Produce a metagene plot
#'
#' @param df a \code{data.frame} obtained with the \code{get_data_frame}
#' function. Must have the following columns: "region", "design", "bin",
#' "value", "qinf" and "qsup".
#'
#' @return A `ggplot` object.
#'
#' @examples
#' region <- get_demo_regions()[1]
#' bam_file <- get_demo_bam_files()[1]
#' mg <- metagene$new(regions = region, bam_files = bam_file)
#' mg$produce_data_frame()
#' df <- mg$get_data_frame()
#' p <- plot_metagene(df)
plot_metagene <- function(df) {
df$design <- as.factor(df$design)
if (('bin' %in% colnames(df)) & !('nuc' %in% colnames(df))) {
# if chipseq, for instance
message('Plot : ChIP-Seq')
expected_cols <- c("bin", "value", "qinf", "qsup", "group")
df<-df[,which(colnames(df) %in% expected_cols)]
expected_class <- c("integer", rep("numeric", 3), "factor")
stopifnot(all(expected_cols %in% colnames(df)))
stopifnot(all(vapply(df, class, character(1)) == expected_class))
ggplot(df, aes(x=bin, y=value, ymin=qinf, ymax=qsup)) +
geom_ribbon(aes(fill=group), alpha=0.3) +
geom_line(aes(color=group), size=1) +
theme(panel.grid.major = element_line()) +
theme(panel.grid.minor = element_line()) +
theme(panel.background = element_blank()) +
theme(panel.background = element_rect()) +
theme_bw(base_size = 20)
} else if (('nuc' %in% colnames(df)) & !('bin' %in% colnames(df))) {
#message(paste('Please, notice that strand orientation by gene',
# 'must be the same for all BAM file.'))
# if rnaseq, for instance
ascending = function(nuc) {
nuc[1] < nuc[2]
}
unique_with_rep = function(vect){
uniq <- list()
uniq[[1]] <- vect[1]
idx <- 2
for (i in 2:length(vect)-1) {
if (vect[i] != vect[i+1]) {
uniq[[idx]] <- vect[i+1]
idx <- idx + 1
}
}
return(unlist(uniq))
}
#elbebg = exon_length_by_exon_by_gene
rev_if_flipped = function(elbebg, are_genes_unflipped) {
for (i in 1:length(elbebg)) {
#if region/gene flipped
if (!are_genes_unflipped[[i]]) {
elbebg[[i]] <- rev(elbebg[[i]])
}
}
return(elbebg)
}
#if only one region/gene in the data_frame
if (length(unique(df$region)) == 1) {
message('Plot : RNA-Seq (One gene)')
are_genes_unflipped <- unlist(lapply(map(unique(df$region),
~ df[which(df$region == .x & df$bam == df$bam[1]),]$nuc)
, ascending))
if (all(are_genes_unflipped)){
exon_separation_bars <- cumsum(unique_with_rep(
df$exonsize[1:length(which(df$bam == df$bam[1]))]))
} else {
exon_separation_bars <- cumsum(rev(unique_with_rep(
df$exonsize[1:length(which(df$bam == df$bam[1]))])))
}
expected_cols <- c("nuc", "value", "qinf", "qsup", "design")
df<-df[,which(colnames(df) %in% expected_cols)]
expected_class <- c("factor", "integer", rep("numeric", 3))
stopifnot(all(expected_cols %in% colnames(df)))
stopifnot(all(vapply(df, class, character(1)) == expected_class))
ggplot(df, aes(x=nuc, y=value, ymin=qinf, ymax=qsup)) +
geom_ribbon(aes(fill = design), alpha=0.3) +
geom_line(aes(color = design), size=1) +
geom_vline(xintercept = exon_separation_bars,
linetype = "dotted") +
theme(panel.grid.major = element_line()) +
theme(panel.grid.minor = element_line()) +
theme(panel.background = element_blank()) +
theme(panel.background = element_rect()) +
theme_bw(base_size = 20)
} else { #if multiple regions/genes in the data_frame
message('Plot : RNA-Seq (Multiple genes)')
are_genes_unflipped <- unlist(lapply(map(unique(df$region),
~ df[which(df$region == .x & df$bam == df$bam[1]),]$nuc)
, ascending))
if (all(are_genes_unflipped)){
exon_separation_bars <- cumsum(unique_with_rep(
df$exonsize[1:length(which(df$bam == df$bam[1]))]))
gene_separation_bars <- cumsum(unique_with_rep(
df$regionsize[1:length(which(df$bam == df$bam[1]))]))
} else {
exon_length_by_exon_by_gene <- map(unique(df$region),
~unique_with_rep(df$exonsize[which(df$region == .x
& df$bam == df$bam[1])]))
exon_separation_bars <- cumsum(unlist(rev_if_flipped(
exon_length_by_exon_by_gene,are_genes_unflipped)))
gene_separation_bars <- cumsum(unlist(rev_if_flipped(
unique_with_rep(
df$regionsize[1:length(which(
df$bam == df$bam[1]))]),
are_genes_unflipped)))
}
expected_cols <- c("nuctot", "value", "qinf", "qsup", "design")
df<-df[,which(colnames(df) %in% expected_cols)]
expected_class <- c("factor", "integer", rep("numeric", 3))
stopifnot(all(expected_cols %in% colnames(df)))
stopifnot(all(vapply(df, class, character(1)) == expected_class))
#adjustment of nuctot in case of subset of original data frame
df$nuctot <- df$nuctot - min(df$nuctot) +1
ggplot(df, aes(x=nuctot, y=value, ymin=qinf, ymax=qsup)) +
geom_ribbon(aes(fill = design), alpha = 0.3) +
geom_line(aes(color = design), size = 1) +
geom_vline(xintercept = exon_separation_bars,
linetype = "dotted") +
geom_vline(xintercept = gene_separation_bars,
linetype = "solid") +
theme(panel.grid.major = element_line()) +
theme(panel.grid.minor = element_line()) +
theme(panel.background = element_blank()) +
theme(panel.background = element_rect()) +
theme_bw(base_size = 20)
}
} else if (('bin' %in% colnames(df)) & ('nuc' %in% colnames(df))) {
message('Plot : RNA-Seq binned')
expected_cols <- c("bin", "value", "qinf", "qsup", "design")
df<-df[,which(colnames(df) %in% expected_cols)]
expected_class <- c("factor", "integer", rep("numeric", 3))
stopifnot(all(expected_cols %in% colnames(df)))
stopifnot(all(vapply(df, class, character(1)) == expected_class))
ggplot(df, aes(x=bin, y=value, ymin=qinf, ymax=qsup)) +
geom_ribbon(aes(fill=design), alpha=0.3) +
geom_line(aes(color=design), size=1) +
theme(panel.grid.major = element_line()) +
theme(panel.grid.minor = element_line()) +
theme(panel.background = element_blank()) +
theme(panel.background = element_rect()) +
theme_bw(base_size = 20)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.