Nothing
## ----style, echo = FALSE, results = 'asis', message = FALSE-------------------
BiocStyle::markdown()
library(knitr)
## ----libraryLoad, message = FALSE---------------------------------------------
library(metagene)
## ----bamFiles-----------------------------------------------------------------
bam_files <-
c(system.file("extdata/cyto4.bam", package="metagene"),
system.file("extdata/cyto3.bam", package="metagene"),
system.file("extdata/nuc4.bam", package="metagene"),
system.file("extdata/nuc3.bam", package="metagene"))
## ----regionsArgument----------------------------------------------------------
regions <-
c(system.file("extdata/DPM1.bed", package="metagene"),
system.file("extdata/NDUFAB1.bed", package="metagene"))
## ----DesignCraft--------------------------------------------------------------
Samples <- c("cyto4.bam",
"cyto3.bam",
"nuc4.bam",
"nuc3.bam")
cyto <- c(1,1,0,0)
nucleo <- c(0,0,1,1)
mydesign <- cbind(Samples, cyto, nucleo)
mydesign <- data.frame(mydesign)
#to make cyto and nucleo colums numeric variables
mydesign$cyto <- cyto
mydesign$nucleo <- nucleo
## ----new metagene_rnaseq object, warnings = FALSE-----------------------------
bam_files <-
c(system.file("extdata/nuc4.bam", package="metagene"))
regions <-
c(system.file("extdata/DPM1.bed", package="metagene"))
# Initialization
mg <- metagene$new(regions = regions,
bam_files = bam_files,
assay = 'rnaseq',
paired_end = TRUE)
mg$produce_table(normalization = 'RPM')
mg$produce_data_frame()
mg$plot(title = 'DPM1')
## ----initialization, warnings = FALSE-----------------------------------------
bam_files <-
c(system.file("extdata/cyto4.bam", package="metagene"),
system.file("extdata/cyto3.bam", package="metagene"),
system.file("extdata/nuc4.bam", package="metagene"),
system.file("extdata/nuc3.bam", package="metagene"))
regions <-
c(system.file("extdata/DPM1.bed", package="metagene"),
system.file("extdata/NDUFAB1.bed", package="metagene"))
mg <- metagene$new(regions = regions,
bam_files = bam_files,
assay = 'rnaseq',
paired_end = TRUE)
## ----showProduceTable, warnings = FALSE---------------------------------------
mg$produce_table(flip_regions = TRUE, normalization = 'RPM')
tab <- mg$get_table()
## ----produceDataFrame---------------------------------------------------------
mg$produce_data_frame()
## ----produceDataFrame2, warnings = FALSE--------------------------------------
bam_files <-
c(system.file("extdata/cyto4.bam", package="metagene"))
region <-
c(system.file("extdata/NDUFAB1.bed", package="metagene"))
mg <- metagene$new(regions = region, bam_files = bam_files, assay = 'rnaseq')
mg$produce_table(flip_regions = TRUE, normalization = 'RPM')
mg$plot(title = 'with all normalized values')
mg$produce_data_frame(avoid_gaps = TRUE,
bam_name = "cyto4",
gaps_threshold = 30)
mg$plot(title = 'without normalized values under 30')
## ----showPlot, warnings = FALSE-----------------------------------------------
bam_files <-
c(system.file("extdata/cyto4.bam", package="metagene"),
system.file("extdata/cyto3.bam", package="metagene"),
system.file("extdata/nuc4.bam", package="metagene"),
system.file("extdata/nuc3.bam", package="metagene"))
regions <-
c(system.file("extdata/DPM1.bed", package="metagene"),
system.file("extdata/NDUFAB1.bed", package="metagene"))
mg <- metagene$new(regions = regions,
bam_files = bam_files,
assay = 'rnaseq',
paired_end = TRUE)
mg$produce_table(normalization = 'RPM')
mg$produce_data_frame(avoid_gaps = TRUE,
bam_name = "cyto4",
gaps_threshold = 30)
mg$plot(region_names = "DPM1", title = "Demo plot subset RNA-Seq")
## ----memory, collapse=TRUE, warnings = FALSE, eval=FALSE----------------------
# regions <-
# c(system.file("extdata/DPM1.bed", package="metagene"),
# system.file("extdata/NDUFAB1.bed", package="metagene"))
# bam_files <-
# c(system.file("extdata/cyto4.bam", package="metagene"),
# system.file("extdata/cyto3.bam", package="metagene"),
# system.file("extdata/nuc4.bam", package="metagene"),
# system.file("extdata/nuc3.bam", package="metagene"))
# mg1 <- metagene$new(bam_files = bam_files[1:2], regions = regions,
# assay = 'rnaseq', paired_end = TRUE)
# mg1$produce_data_frame()
# mg2 <- metagene$new(bam_files = bam_files[3:4], regions = regions,
# assay = 'rnaseq', paired_end = TRUE)
# mg2$produce_data_frame()
## ----extractDF, eval=FALSE----------------------------------------------------
# df1 <- mg1$get_data_frame()
# df2 <- mg2$get_data_frame()
# df <- rbind(df1, df2)
## ----out.width="px", out.height="400px", eval=FALSE---------------------------
# p <- plot_metagene(df)
# p + ggplot2::ggtitle("Managing large datasets")
#
## ----extract_subtables, warnings = FALSE--------------------------------------
mg <- metagene$new(bam_files = bam_files, regions = regions,
assay = 'rnaseq', paired_end = TRUE)
mg$produce_table(design = mydesign, normalization = 'RPM')
tab <- mg$get_table()
tab0 <- metagene:::avoid_gaps_update(tab,
bam_name = 'cyto4', gaps_threshold = 10)
tab0 <- tab0[which(tab0$region == "NDUFAB1"),]
tab1 <- tab0[which(tab0$design == "cyto"),]
tab2 <- tab0[which(tab0$design == "nucleo"),]
## ----similaRpeak--------------------------------------------------------------
library(similaRpeak)
perm_fun <- function(profile1, profile2) {
sim <- similarity(profile1, profile2)
sim[["metrics"]][["RATIO_INTERSECT"]]
}
## ----calculateRNI-------------------------------------------------------------
ratio_intersect <-
perm_fun(tab1[, .(moy=mean(value)), by=nuc]$moy,
tab2[, .(moy=mean(value)), by=nuc]$moy)
ratio_intersect
## ----permTest-----------------------------------------------------------------
permutation_results <- permutation_test(tab1, tab2, sample_size = 2,
sample_count = 1000, FUN = perm_fun)
## ----perm_pval----------------------------------------------------------------
sum(ratio_intersect >= permutation_results) /
length(permutation_results)
mg$plot(region_names = 'NDUFAB1', title='NDUFAB1')
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.