Description Usage Arguments Value References Examples
Remove the genes (rows) that have more than r% of missing data; use the impute package to fill in missing data, and finally normalise the data.
1 | ImputeNormData(dataset, r)
|
dataset |
The input dataset in csv format. e.g. "EMT.csv" |
r |
The rate threshold to filter the records (genes). Genes with more than r% missing data will be removed. |
The processed dataset.
1. Hastie T, Tibshirani R, Narasimhan B and Chu G. impute: Imputation for microarray data. R package version 1.42.0.
2. Smyth, G.K. (2005). Limma: linear models for microarray data. In Bioinformatics and computational biology solutions using R and Bioconductor (pp. 397-420). Springer New York.
1 2 | dataset=system.file("extdata", "ToyEMT.csv", package="miRLAB")
impdata=ImputeNormData(dataset, 0.1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.