R/plot_regression.R

Defines functions plot_regression

Documented in plot_regression

#' @title Visually Weighted Regression Plot
#' @description Draw regression curve with smoothed error bars 
#' with Visually-Weighted Regression by Solomon M. Hsiang; see
#' \url{http://www.fight-entropy.com/2012/07/visually-weighted-regression.html}
#' The R is modified from Felix Schonbrodt's original code
#' http://www.nicebread.de/
#' visually-weighted-watercolor-plots-new-variants-please-vote
#' @param formula formula
#' @param data data
#' @param B number bootstrapped smoothers
#' @param shade plot the shaded confidence region?
#' @param shade.alpha shade.alpha: should the CI shading fade out at 
#' the edges? (by reducing alpha; 0=no alpha decrease, 
#' 0.1=medium alpha decrease, 0.5=strong alpha decrease)
#' @param spag plot spaghetti lines?
#' @param mweight visually weight the median smoother
#' @param show.lm plot the linear regression line
#' @param show.median show median smoother
#' @param median.col median color
#' @param show.CI should the 95\% CI limits be plotted?
#' @param method the fitting function for the spaghettis; default: loess
#' @param slices number of slices in x and y direction for the shaded
#' region. Higher numbers make a smoother plot, but takes longer to
#' draw. I wouldn'T go beyond 500
#' @param ylim restrict range of the watercoloring
#' @param quantize either 'continuous', or 'SD'. In the latter case, 
#' we get three color regions for 1, 2, and 3 SD (an idea of John Mashey)
#' @param show.points Show points.
#' @param color Point colors
#' @param pointsize Point sizes
#' @param ... further parameters passed to the fitting function, 
#' in the case of loess, for example, 'span=.9', or 
#' 'family='symmetric''
#' @return ggplot2 object
#' @export 
#' @examples
#' data(atlas1006)
#' pseq <- subset_samples(atlas1006,
#'    DNA_extraction_method == 'r' &
#'    sex == "female" &
#'    nationality == "UKIE",
#'    B=10, slices=10 # non-default used here to speed up examples
#'    )
#' p <- plot_regression(diversity ~ age, meta(pseq)[1:20,], slices=10, B=10)
#' @references See citation('microbiome') 
#' @author Based on the original version from F. Schonbrodt. 
#' Modified by Leo Lahti \email{microbiome-admin@@googlegroups.com}
#' @keywords utilities
plot_regression <- function(formula, data, B=1000, shade=TRUE,
    shade.alpha=0.1, spag=FALSE, mweight=TRUE, show.lm=FALSE,
    show.median=TRUE, median.col="white", 
    show.CI=FALSE, method=loess, slices=200,
    ylim=NULL, quantize="continuous", show.points=TRUE,
    color = NULL, pointsize = NULL,
    ...) {
    
    # # Some transparency problems solved with:
    # # http://tinyheero.github.io/2015/09/15/semi-transparency-r.html
    
    # # Circumvent variable binding warnings
    . <- NULL
    aes <- NULL
    x <- NA
    y <- NA
    dens.scaled <- NA
    alpha.factor <- NA
    value <- NA
    group <- NA
    M <- NA
    w3 <- NA
    UL <- NA
    LL <- NA
    
    # ------------------

    IV <- all.vars(formula)[[2]]
    DV <- all.vars(formula)[[1]]

    data$IV <- data[[IV]]
    data$DV <- data[[DV]]
    data[[IV]] <- data[[DV]] <- NULL
    data <- arrange(data, IV) %>% 
                                filter(!is.na(IV) & !is.na(DV)) %>% 
                                filter(!is.infinite(IV) & !is.infinite(DV))

    message("Computing bootsrapped smoothers ...")
    newx <- data.frame(seq(min(data$IV), max(data$IV), length=slices))
    colnames(newx) <- "IV"
    
    l0.boot <- matrix(NA, nrow=nrow(newx), ncol=B)
    formula <- DV ~ IV
    l0 <- method(formula, data)
    for (i in seq_len(B)) {
        data2 <- data[sample(nrow(data), replace=TRUE), ]
        data2 <- data2[order(data2$IV), ]
        
        if (is(l0) == "loess") {
            m1 <- method(formula, data2,
        control=loess.control(surface="i", statistics="a", 
                trace.hat="a"), ...)
        } else {
            m1 <- method(formula, data2, ...)
        }
        l0.boot[, i] <- predict(m1, newdata=newx)
    }
    
    
    # # Compute median and CI limits of bootstrap
    CI.boot <- t(apply(l0.boot, 1, function(x)
        quantile(x, prob=c(0.025, 0.5, 0.975, 
        pnorm(c(-3, -2, -1, 0, 1, 2, 3))), na.rm=TRUE)))
    colnames(CI.boot)[seq_len(10)] <- c("LL", "M", "UL",
        paste0("SD", seq_len(7)))
    
    CI.boot <- as.data.frame(CI.boot)
    CI.boot$x <- newx[, 1]
    CI.boot$width <- CI.boot$UL - CI.boot$LL
    
    # # Scale the CI width to the range 0 to 1 and flip it (bigger
    # # numbers=narrower CI)    
    CI.boot$w2 <- (CI.boot$width - min(CI.boot$width))
    CI.boot$w3 <- 1 - (CI.boot$w2/max(CI.boot$w2))
    
    message("Convert to long")
    b2 <- melt(l0.boot, id.vars="x")
    b2$x <- newx[, 1]
    colnames(b2) <- c("index", "B", "value", "x")
    b2$value <- as.numeric(as.character(b2$value))

    if (is.null(color)) {
        data$color <- rep(1, nrow(data))
    } else {
        data$color <- data[[color]]
    }


    if (is.null(pointsize)) {
        data$pointsize <- rep(1, nrow(data))
    } else {
        data$pointsize <- data[[pointsize]]
    }

    p1 <- ggplot(data, aes_string(x="IV", y="DV"))
    
    if (shade) {
        
        quantize <- match.arg(quantize, c("continuous", "SD"))
        
        if (quantize == "continuous") {
            message("Computing density estimates for the vertical cuts ...")
            flush.console()
            if (is.null(ylim)) {
                min_value <- min(min(l0.boot, na.rm=TRUE),
            min(data$DV, na.rm=TRUE))
                max_value <- max(max(l0.boot, na.rm=TRUE),
            max(data$DV, na.rm=TRUE))
                ylim <- c(min_value, max_value)
            }
        }
        
        message("Vertical cross-sectional density estimate")
        d2 <- b2 %>% # select(x, value) %>%
        group_by(x) %>%
        do(data.frame(density(.$value, na.rm=TRUE,
            n=slices, from=ylim[[1]], to=ylim[[2]])[c("x", "y")]))
        d2 <- data.frame(d2)
        names(d2) <- c("y", "dens")
        d2$x <- rep(unique(b2$x), each=slices)
        # d2$x <- rep(b2$x, each=slices) d2$x <- b2$x
        d2 <- d2[, c("x", "y", "dens")]
        maxdens <- max(d2$dens)
        mindens <- min(d2$dens)
        d2$dens.scaled <- (d2$dens - mindens)/maxdens
        
        message("Tile approach")
        d2$alpha.factor <- d2$dens.scaled^shade.alpha
        p1 <- p1 + geom_tile(data=d2,
            aes(x=x, y=y, fill=dens.scaled, alpha=alpha.factor))
        p1 <- p1 + scale_alpha_continuous(range=c(0.001, 1))
        
    }
    
    if (quantize == "SD") {
        message("Polygon approach")
        SDs <- melt(CI.boot[, c("x", paste0("SD", seq_len(7)))], id.vars="x")
        count <- 0
        d3 <- data.frame()
        col <- c(1, 2, 3, 3, 2, 1)
        for (i in seq_len(6)) {
            seg1 <- SDs[SDs$variable == paste0("SD", i), ]
            seg2 <- SDs[SDs$variable == paste0("SD", i + 1), ]
            seg <- rbind(seg1, seg2[nrow(seg2):1, ])
            seg$group <- count
            seg$col <- col[i]
            count <- count + 1
            d3 <- rbind(d3, seg)
        }

        p1 <- p1 + geom_polygon(data=d3,
            aes(x=x, y=value, color=NULL, fill=col, group=group))
        
    }
    
    message("Build ggplot...")
    flush.console()
    if (spag) {
        p1 <- p1 + geom_path(data=b2,
        aes(x=x, y=value, group=B), size=0.7, 
            alpha=10/B, color="darkblue")
    }
    
    if (show.median) {
        if (mweight) {
            p1 <- p1 + geom_path(data=CI.boot,
            aes(x=x, y=M, alpha=w3^3), 
                size=0.6, linejoin="mitre", color=median.col)
        } else {
            p1 <- p1 + geom_path(data=CI.boot,
            aes(x=x, y=M), size=0.6, linejoin="mitre", 
                color=median.col)
        }
    }
    
    if (show.CI) {
        p1 <- p1 + geom_path(data=CI.boot,
        aes(x=x, y=UL, group=B), size=1, 
            color="red")
        p1 <- p1 + geom_path(data=CI.boot,
        aes(x=x, y=LL, group=B), size=1, 
            color="red")
    }
    
    if (show.lm) {
        p1 <- p1 + geom_smooth(method="lm", color="darkgreen", se=FALSE)
    }

    if (show.points) {
        p1 <- p1 + geom_point(aes(color=color, size=pointsize), data = data) +
            scale_size(range = c(1,3)) 
    }

    p <- p1 + labs(x = IV, y = DV)
    
    p
    
}

Try the microbiome package in your browser

Any scripts or data that you put into this service are public.

microbiome documentation built on Nov. 8, 2020, 5:08 p.m.