Nothing
## Modules for inter sample analysis tab
#' Abundance Heatmap module - UI
#'
#' @param id namespace identifier
#'
#' @author Janina Reeder
#'
#' @return box holding the UI code
abundanceHeatmapUI <- function(id) {
ns <- NS(id)
box(
title = "ABUNDANCE HEATMAP", solidHeader = TRUE,
collapsible = TRUE, width = 12,
fluidRow(
column(
width = 11,
shinycssloaders::withSpinner(
plotly::plotlyOutput(ns("abhmplot"),
width = "auto",
height = "800px"),
type = 3, color = "#424242",
color.background = "#fdfdfc"),
br(),
shinyjs::disabled(
shinyWidgets::dropdownButton(
tags$h3("Plot Options"),
numericInput(
inputId = ns("hmfeats"),
label = "Number of features",
value = 50, min = 1
),
selectInput(
inputId = ns("hmcol"),
label = "Phenotype annotations",
choices = "",
multiple = TRUE
),
selectInput(
inputId = ns("rowcol"),
label = "Feature annotation",
choices = "",
multiple = FALSE
),
shinyWidgets::switchInput(
inputId = ns("hmlog"),
label = "Log Scale",
size = "mini",
value = TRUE,
labelWidth = "80px"
),
actionButton(
ns("changeHeatmapSettings"),
label = "GO", width = "50px"),
circle = FALSE, status = "danger",
icon = icon("gear"), width = "300px",
label = "Plot Options",
inputId = ns("optionbutton")
))
)
)
)
}
#' Abundance Heatmap module - server
#'
#' @param input shiny input
#' @param output shiny output
#' @param session shiny session
#' @param aggDat aggregated MRExperiment
#' @param featLevel chosen feature level (aggregation level)
#' @param colorOptions reactive storing filters selected via data input
#' @param levelOpts all available level choices for this dataset
#' @param hmSort reactive storing sorting method for heatmap
#' @param hmFeatList reactive storing list of features to include in heatmap
#' @param reset boolean reactive which resets the module if TRUE
#'
#' @author Janina Reeder
#'
#' @return R code needed to generate the heatmap
abundanceHeatmap <- function(input, output, session,
aggDat,
featLevel,
colorOptions,
levelOpts,
hmSort,
hmFeatList,
reset) {
ns <- session$ns
## update with available phenotype annotation options
observe({
if(is.null(colorOptions())){
updateSelectInput(session, "hmcol", choices = "")
} else {
updateSelectInput(session, "hmcol", choices = c("",colorOptions()))
}
})
## update with available feature level annotation options
observe({
req(levelOpts(), featLevel())
uptoind <- which(levelOpts() == featLevel())
updateSelectInput(session, "rowcol",
choices = c("", levelOpts()[seq_len(uptoind)]))
})
## reatives storing plot options and whether plot update is required
hmColors <- reactiveVal(NULL)
rowColors <- reactiveVal(NULL)
numOfFeats <- reactiveVal(50)
logScale <- reactiveVal(TRUE)
updatePlot <- reactiveVal(TRUE)
## stores the R code needed to build the heatmap
repCode <- reactiveVal(NULL)
observe({
req(reset())
shinyjs::disable("optionbutton_state")
hmColors(NULL)
rowColors(NULL)
numOfFeats(50)
updatePlot(TRUE)
repCode(NULL)
shinyjs::reset("abhmplot")
})
## update plot options based on GO click
observeEvent(input$changeHeatmapSettings,{
changed <- FALSE
updatePlot(FALSE)
if(!is.null(input$hmcol) && !input$hmcol %in% hmColors()){
hmColors(input$hmcol)
changed <- TRUE
}
if(!is.null(input$rowcol) && !input$rowcol %in% rowColors()){
rowColors(input$rowcol)
changed <- TRUE
}
if(!is.null(input$hmfeats) && !input$hmfeats %in% numOfFeats()){
numOfFeats(input$hmfeats)
changed <- TRUE
}
if(!is.null(input$hmlog) && !input$hmlog %in% logScale()){
logScale(input$hmlog)
changed <- TRUE
}
updatePlot(changed)
})
## render the heatmap
output$abhmplot <- plotly::renderPlotly({
req(aggDat(), hmSort(), updatePlot())
shinyjs::enable("optionbutton_state")
plotTitle <- 'if'(is.null(hmFeatList()),
paste0("Top ", numOfFeats(),
" features sorted by ",
hmSort()),
paste0("Selected features"))
plotTitle <- paste0(plotTitle,
" at ",
featLevel(),
" level")
repCode(paste(
paste0("#' ### Feature Heatmap"),
paste0("", "#- fig.width = 7, fig.height = 9"),
paste0("plotHeatmap(aggDat,"),
paste0("\tfeatures = ",
'if'(is.null(hmFeatList()), "NULL",
paste0("c(",
paste0("\"", hmFeatList(), "\"",
collapse = ", "), ")")),
","),
paste0("\tlog = ", logScale(), ","),
paste0("\tsort_by = \"", hmSort(), "\","),
paste0("\tnfeat = ", numOfFeats(), ","),
paste0("\tcol_by = ",
'if'(is.null(hmColors()), "NULL",
paste0("c(",
paste0("\"", hmColors(), "\"",
collapse = ", "),")")),
","),
paste0("\trow_by = ",
'if'(is.null(rowColors()), "NULL",
paste0("\"", rowColors(), "\"")), ","),
paste0("\tplotTitle = \"",plotTitle,"\")\n\n"),
sep = "\n"
))
plotHeatmap(
aggdat = aggDat(),
features = hmFeatList(),
log = logScale(),
sort_by = hmSort(),
nfeat = isolate(numOfFeats()),
col_by = isolate(hmColors()),
row_by = isolate(rowColors()),
plotTitle = plotTitle
)
})
return(repCode)
}
#' Beta Diversity module - UI
#'
#' @param id namespace identifier
#'
#' @author Janina Reeder
#'
#' @return box holding the ui code
betaDiversityUI <- function(id) {
ns <- NS(id)
box(
title = "BETA DIVERSITY", solidHeader = TRUE,
collapsible = TRUE, width = 12,
fluidRow(
column(
width = 11,
shinycssloaders::withSpinner(
plotly::plotlyOutput(ns("betaDiv"),
width = "auto",
height = "auto"),
type = 3, color = "#424242",
color.background = "#fdfdfc"),
shinyjs::disabled(
shinyWidgets::dropdownButton(
tags$h3("Plot Options"),
selectInput(
inputId = ns("Xbeta"),
label = "X",
choices = c("PC1", "PC2", "PC3", "PC4",
"PC5", "PC6", "PC7", "PC8"),
selected = "PC1"
),
selectInput(
inputId = ns("Ybeta"),
label = "Y",
choices = c("PC1", "PC2", "PC3", "PC4",
"PC5", "PC6", "PC7", "PC8"),
selected = "PC2"
),
selectInput(
inputId = ns("betacol"),
label = "Color by",
choices = ""
),
checkboxInput(inputId = ns("confEllipse"),
label = "Add confidence ellipse",
value = FALSE),
sliderInput(inputId = ns("confLevel"),
label = "Confidence Level",
min = 0.01, max = 0.99,
step = 0.01, value = 0.95),
selectInput(inputId = ns("betashape"),
label = "Shape by",
choices = ""
),
numericInput(inputId = ns("betasize"),
label = "Point size",
value = 8, min = 1
),
sliderInput(
inputId = ns("plotWidth"),
label = "Adjust plot width",
value = 650,
min = 250,
max = 1600,
round = TRUE
),
actionButton(ns("changeBetaSettings"),
label = "GO", width = "50px"),
circle = FALSE, status = "danger",
icon = icon("gear"), width = "300px",
label = "Plot Options",
inputId = ns("optionbutton")
))
)
),
fluidRow(
column(width = 1),
column(width = 10, class = "statsrow",
DT::DTOutput(ns("statsdatatable"),
width = "90%", height = "auto")
)
)
)
}
#' Beta Diversity module - server
#'
#' @param input shiny input
#' @param output shiny output
#' @param session shiny session
#' @param aggDat MRExperiment storing data
#' @param aggLevel aggregation level
#' @param colorOptions phenotype selection options for color
#' @param shapeOptions phenotype selection options for shape
#' @param betadistance distance measured used for beta diversity analysis
#' @param betaSettings input choices for beta diversity
#' @param reset boolean reactive which resets the module if TRUE
#'
#' @author Janina Reeder
#'
#' @return R code needed to generate the beta diversity plot
betaDiversity <- function(input, output, session,
aggDat,
aggLevel,
colorOptions,
shapeOptions,
betadistance,
betaSettings,
reset) {
ns <- session$ns
## reatives storing plot options and whether plot update is required
shapeChoice <- reactiveVal("None")
colorChoice <- reactiveVal("No Color")
sizeChoice <- reactiveVal(8)
xbeta <- reactiveVal("PC1")
ybeta <- reactiveVal("PC2")
updatePlot <- reactiveVal(FALSE)
## stores the R code needed to build the plot
repCode <- reactiveVal(NULL)
## reactive storing distance matrices (to be pulled from DB)
distMat <- reactiveVal(NULL)
pcaVals <- reactiveVal(NULL)
adonisVar <- reactiveVal(NULL)
adonisStrata <- reactiveVal(NULL)
adonisText <- reactiveVal(NULL)
adonisCode <- reactiveVal(NULL)
plotComplete <- reactiveVal(FALSE)
confInterval <- reactiveVal(NULL)
observe({
req(reset())
shinyjs::disable("optionbutton_state")
shapeChoice("None")
colorChoice("No Color")
sizeChoice(8)
xbeta("PC1")
ybeta("PC2")
updatePlot(FALSE)
repCode(NULL)
distMat(NULL)
pcaVals(NULL)
adonisVar(NULL)
adonisStrata(NULL)
adonisText(NULL)
adonisCode(NULL)
plotComplete(FALSE)
})
## update available choices for color and shape
observe({
updateSelectInput(session, "betacol",
choices = c("No Color", colorOptions()))
updateSelectInput(session, "betashape",
choices = c("None",shapeOptions()))
})
observeEvent(input$betacol,{
if(input$betacol == "No Color"){
shinyjs::disable("confEllipse")
shinyjs::disable("confLevel")
} else {
shinyjs::enable("confEllipse")
}
})
observeEvent(input$optionbutton_state,{
req(input$betacol == "No Color")
shinyjs::disable("confEllipse")
shinyjs::disable("confLevel")
})
observe({
req(input$optionbutton_state)
if(input$confEllipse){
shinyjs::enable("confLevel")
} else {
shinyjs::disable("confLevel")
}
})
observe({
req(input$betacol != "No Color", input$confEllipse)
confInterval(input$confLevel)
})
## update adonisVar and adonisStrata if inputs change
observeEvent(betaSettings()$adonisvar,{
req(aggDat())
if(!is.null(betaSettings()$adonisvar) && betaSettings()$adonisvar != ""){
phenoData <- pData(aggDat())
## check if columns contains NA
varNA <- (sum(is.na(
phenoData[,betaSettings()$adonisvar])) |
sum(phenoData[,betaSettings()$adonisvar] %in% "")) > 0
strataNA <- FALSE
if(!is.null(betaSettings()$adonisstrata)){
strataNA <- (sum(is.na(
phenoData[,betaSettings()$adonisstrata])) |
sum(phenoData[,betaSettings()$adonisstrata] %in% "")) > 0
}
## in case NAs are present, we need to check in with user
if(varNA | strataNA){
showModal(modalDialog(
title = "Adonis Variables contains NA",
paste0("NA values are present in the adonis variables:\n\n",
'if'(
varNA,
paste0("\n\t",
betaSettings()$adonisvar),
""),
'if'(
strataNA,
paste0("\n\t",
betaSettings()$adonisstrata),
""),
"\nTo compute adonis statistics, all NAs need to be removed
or treated as \"NA\" strings. \n\n We advise to use adonis
variables not containing NA values.\n\n
Do you want to replace NA with \"NA\" or abort to review?"),
footer = tagList(actionButton(ns("confirmReplace"),
"Replace"),
actionButton(ns("confirmReview"),
"Abort")
),
easyClose = FALSE))
} else {
if(!varNA){
adonisVar(phenoData[,betaSettings()$adonisvar])
}
if(!strataNA){
if(!is.null(betaSettings()$adonisstrata)){
adonisStrata(
phenoData[,betaSettings()$adonisstrata])
} else {
adonisStrata(NULL)
}
}
}
} else {
adonisText(NULL)
adonisVar(NULL)
adonisStrata(NULL)
adonisCode(NULL)
}
})
observeEvent(input$confirmReview,{
removeModal()
adonisVar(NULL)
adonisStrata(NULL)
})
observeEvent(input$confirmReplace,{
removeModal()
phenoData <- pData(aggDat())
adonisVar('if'(
is.na(phenoData[,betaSettings()$adonisvar]),
"NA",
phenoData[,betaSettings()$adonisvar]))
if(!is.null(betaSettings()$adonisstrata)){
adonisStrata('if'(
is.na(
phenoData[,betaSettings()$adonisstrata]),
"NA",
phenoData[,betaSettings()$adonisstrata]))
}
})
observeEvent(c(aggDat(), betadistance()),{
req(aggDat(), betadistance() != "")
if(!(betadistance() %in% names(distMat()))){
withProgress({
newDist <- list(computeDistMat(aggDat(),betadistance()))
incProgress(0.5)
oldDists <- distMat()
oldDists[[betadistance()]] <- newDist
distMat(oldDists)
}, message = "Calculating distance matrix and PCAs")
}
pcaVals(calculatePCAs(distMat()[[betadistance()]][[1]],
c(xbeta(),ybeta())))
}, priority = 20)
output$statsdatatable <- DT::renderDT({
req(aggDat(),distMat(), adonisVar())
if(!is.null(betaSettings()$adonisvar) && betaSettings()$adonisvar != ""){
beta_dis <- distMat()[[betadistance()]][[1]]
req(labels(beta_dis) == rownames(pData(aggDat())))
phenoData <- pData(aggDat())
phenoData[,betaSettings()$adonisvar] <-
adonisVar()
formula <- stats::as.formula(paste("beta_dis ~ ",
betaSettings()$adonisvar))
x <- tryCatch(
vegan::adonis(formula = formula,
data = phenoData,
strata = isolate(adonisStrata()),
permutations=500,
parallel = 1),
error = function(e){
showModal(modalDialog(
title = "Error running adonis",
e,
easyClose = TRUE
))
return(NULL)
}
)
tableCaption <- paste0("Adonis variance of ",
isolate(betaSettings()$adonisvar))
if(!is.null(adonisStrata()))
tableCaption <- paste0(tableCaption,
" with strata ",
isolate(betaSettings()$adonisstrata))
adonisCode(paste(
paste0("\nphenoData <- pData(aggDat)"),
paste0("phenoData[,\"",betaSettings()$adonisvar,
"\"] <- c(", paste0(
paste0("\"",adonisVar(),"\""),
collapse = ","),")"),
paste0("formula <- as.formula(distMat ~ ",
betaSettings()$adonisvar,")\n"),
paste0("x <- vegan::adonis(formula = formula,"),
paste0("\tdata = phenoData,"),
paste0("\tstrata = ", 'if'(is.null(adonisStrata()), "NULL",
paste0("c(",paste0(
paste0("\"",adonisStrata(),"\""),
collapse = ","),")")),","),
paste0("\tpermutations=500,"),
paste0("\tparallel = 1)"),
paste0("adonisData <- as.data.frame(x$aov.tab)"),
paste0("adonisData[] <- sapply(adonisData, as.numeric)"),
paste0("adonisData[] <- sapply(adonisData, round, digits = getOption(\"me.round_digits\"))"),
paste0("\n\nif(doctype == \"html\"){"),
paste0("\tDT::datatable(data = adonisData,
class = \"stripe hover cell-border order-column\","),
paste0("\t\tfilter = \"none\", style = \"bootstrap\","),
paste0("\t\tcaption = \"",tableCaption,"\","),
paste0("\t\toptions = list(scrollX = TRUE, paging = FALSE,
digits = 4,dom = \"<tp>\"),"),
paste0("\t\tescape = FALSE)"),
paste0("} else {"),
paste0("\tkable(adonisData)"),
paste0("}\n\n"),
sep = "\n"))
adonisData <- as.data.frame(x$aov.tab)
adonisData[] <- vapply(adonisData, as.numeric, numeric(3))
adonisData[] <- vapply(adonisData, round,
digits = getOption("me.round_digits"),
numeric(3))
adonisText(paste0("R2: ", adonisData[1,"R2"],
"; Pr(>F): ", adonisData[1,"Pr(>F)"]))
DT::datatable(
data = adonisData,
class = "stripe hover cell-border order-column",
filter = "none", style = "bootstrap",
caption = tableCaption,
options = list(
scrollX = TRUE,
paging = FALSE,
digits = 4,
dom = "<tp>"
),
escape = FALSE
)
} else {
adonisText(NULL)
return (NULL)
}
})
## update plot options based on GO click
observeEvent(input$changeBetaSettings,{
changed <- FALSE
updatePlot(FALSE)
if(!input$Xbeta %in% xbeta()){
xbeta(input$Xbeta)
changed <- TRUE
}
if(!input$Ybeta %in% ybeta()){
ybeta(input$Ybeta)
changed <- TRUE
}
if(changed){
req(distMat(), betadistance() != "")
pcaVals(calculatePCAs(distMat()[[betadistance()]][[1]],
c(xbeta(),ybeta())))
}
if(!input$betacol %in% colorChoice()){
colorChoice(input$betacol)
changed <- TRUE
}
if(!input$betashape %in% shapeChoice()){
shapeChoice(input$betashape)
changed <- TRUE
}
if(!input$betasize %in% sizeChoice()){
sizeChoice(input$betasize)
changed <- TRUE
}
if(input$confEllipse && !(input$confLevel != confInterval())){
confInterval(input$confLevel)
changed <- TRUE
}
if(!input$confEllipse && !is.null(confInterval())){
confInterval(NULL)
changed <- TRUE
}
updatePlot(changed)
})
observe({
req(plotComplete())
aT <- adonisText()
if(is.null(aT))
aT <- ""
plotly::plotlyProxy("betaDiv", session) %>%
plotly::plotlyProxyInvoke(
"restyle",
list(text = aT),
0
)
shinyjs::js$resetAxes()
})
observeEvent(input$plotWidth, {
req(pcaVals(), plotComplete())
plotly::plotlyProxy("betaDiv", session) %>%
plotly::plotlyProxyInvoke(
"relayout",
list(width = input$plotWidth)
)
})
## calls beta diversity plotting function
output$betaDiv <- plotly::renderPlotly({
req(pcaVals())
shinyjs::enable("optionbutton_state")
updatePlot()
plotComplete(FALSE)
plotTitle <- paste0(betadistance(),
" diversity at ",
aggLevel()," level")
color <- as.character(isolate(colorChoice()))
if (stringr::str_detect(color, "No Color")) {
color <- NULL
}
shape <- as.character(isolate(shapeChoice()))
if (stringr::str_detect(shape, "None")) {
shape <- NULL
}
pb <- plotBeta(
aggdat = aggDat(),
dist_method = tolower(betadistance()),
pcas = isolate(pcaVals()),
dim = isolate(c(xbeta(), ybeta())),
col_by = color,
shape_by = shape,
plotTitle = plotTitle,
pt_size = isolate(sizeChoice()),
plotText = isolate(adonisText()),
confInterval = isolate(confInterval())
)
shinyjs::delay(500, plotComplete(TRUE))
pb
})
## update the stored R code based on input choices
observe({
req(pcaVals())
color <- as.character(colorChoice())
if (stringr::str_detect(color, "No Color")) {
color <- NULL
}
shape <- as.character(shapeChoice())
if (stringr::str_detect(shape, "None")) {
shape <- NULL
}
plotTitle <- paste0(betadistance(),
" diversity at ",
aggLevel()," level")
repCode(paste(
paste0("#' ### Beta diversity"),
paste0("", "#- fig.width = 7"),
paste0("distMat <- computeDistMat(aggDat, \"",
tolower(betadistance()), "\")"),
paste0("pcaVals <- calculatePCAs(distMat,
c(\"", xbeta(), "\", \"", ybeta(), "\"))\n"),
paste0("plotBeta(aggDat,"),
paste0("\tdist_method = \"", tolower(betadistance()), "\","),
paste0("\tpcas = pcaVals,"),
paste0("\tdim = c(\"", xbeta(), "\", \"", ybeta(), "\"),"),
paste0("\tcol_by = ",
'if'(is.null(color), "NULL",
paste0("\"", color, "\"")), ","),
paste0("\tshape_by = ",
'if'(is.null(shape), "NULL",
paste0("\"", shape, "\"")), ","),
paste0("\tplotTitle = \"",plotTitle, "\","),
paste0("\tpt_size = \"",sizeChoice(), "\","),
paste0("\tplotText = \"",adonisText(), "\","),
paste0("\tconfInterval = ",confInterval(), ","),
paste0("\tallowWebGL = FALSE)\n\n"),
adonisCode(),"\n\n",
sep = "\n"
))
})
return(repCode)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.