Nothing
################################################################################
#' Calculate distance, dissimilarity
#'
#' Takes a \code{\link{phyloseq-class}} object and method option, and returns
#' a \code{\link{dist}}ance object suitable for certain
#' ordination methods and other distance-based analyses.
#' Only
#' sample-wise distances are currently supported (the \code{type} argument),
#' but eventually species-wise (OTU-wise)
#' distances may be supported as well.
#'
#' Depending on the \code{method}
#' argument, \code{distance()} wraps one of
#' \code{\link{UniFrac}},
#' \code{\link{DPCoA}},
#' \code{\link{JSD}},
#' \code{\link[vegan]{vegdist}},
#' \code{\link[vegan]{betadiver}},
#' \code{\link[vegan]{designdist}}, or
#' \code{\link{dist}}.
#'
#' @param physeq (Required). A \code{\link{phyloseq-class}} or
#' an \code{\link{otu_table-class}} object. The latter is only appropriate
#' for methods that do not require any additional data (one-table).
#' For example, the ``wunifrac'' option (\code{\link{UniFrac}}) requires
#' \code{\link{phyloseq-class}} that contains both an \code{otu_table}
#' and a phylogenetic tree (\code{phylo}).
#'
#' @param method (Required). A character string.
#' Provide one of the currently supported options.
#' See \code{\link{distanceMethodList}} for a detailed list
#' of the supported options here,
#' and links to accompanying documentation.
#'
#' Note that for the common definition of \code{Jaccard} distance
#' using the \code{vegan-package} implementation,
#' an additional argument is needed, with the full call having the form:
#' \code{distance(physeq, method = "jaccard", binary = TRUE)}
#'
#' The following methods are implemented explicitly within
#' the \code{\link{phyloseq-package}},
#' and accessed by the following \code{method} options:
#'
#' \describe{
#' \item{\code{"unifrac"}}{Original (unweighted) UniFrac distance,
#' \code{\link[phyloseq]{UniFrac}}}
#' \item{\code{"wunifrac"}}{weighted-UniFrac distance, \code{\link[phyloseq]{UniFrac}}}
#' \item{\code{"dpcoa"}}{
#' sample-wise distance used in
#' Double Principle Coordinate Analysis, \code{\link[phyloseq]{DPCoA}}}
#' \item{\code{"jsd"}}{Jensen-Shannon Divergence, \code{\link{JSD}}}
#' }
#'
#' Alternatively, you can provide
#' a character string that defines a custom distance method, if it has the form
#' described in \code{\link{designdist}}.
#'
#' @param type (Optional). A character string. The type of pairwise comparisons
#' being calculated: sample-wise or taxa-wise. The default is
#' \code{c("samples")}.
#'
#' @param ... Additional arguments passed on to the appropriate distance
#' function, determined by the \code{method} argument.
#'
#' @return An object of class ``\code{\link{dist}}'' suitable for certain
#' ordination methods and other distance-based analyses.
#'
#' @seealso
#' \code{\link{plot_ordination}},
#' \code{\link{UniFrac}},
#' \code{\link{DPCoA}},
#' \code{\link{JSD}},
#' \code{\link[vegan]{vegdist}},
#' \code{\link[vegan]{betadiver}},
#' \code{\link[vegan]{designdist}},
#' \code{\link{dist}}.
#'
#' @importFrom vegan betadiver
#' @importFrom vegan designdist
#' @importFrom vegan vegdist
#' @export
#' @examples
#' data(esophagus)
#' distance(esophagus, "uunifrac") # Unweighted UniFrac
#' distance(esophagus, "wunifrac") # weighted UniFrac
#' distance(esophagus, "jaccard", binary = TRUE) # vegdist jaccard
#' distance(esophagus, "gower") # vegdist option "gower"
#' distance(esophagus, "g") # designdist method option "g"
#' distance(esophagus, "minkowski") # invokes a method from the base dist() function.
#' distance(esophagus, "(A+B-2*J)/(A+B)") # designdist custom distance
#' distanceMethodList
#' help("distance")
setGeneric("distance", function(physeq, method, type="samples", ...){
standardGeneric("distance")
})
#' @rdname distance
setMethod("distance", c("phyloseq", "ANY"), function(physeq, method){
stop("You must specify a `method` argument as a character string.
\nIt was missing/NA or not a character string.
\nSee `?distanceMethodList`")
})
#' @rdname distance
setMethod("distance", c("otu_table", "character"), function(physeq, method, type="samples", ...){
OTU = physeq
if( method == "jsd" ){
return(JSD(OTU))
}
# Hard-coded dispatch according to certain method groups
if( method %in% distanceMethodList$vegdist ){
dfun <- "vegdist"
} else if( method %in% distanceMethodList$betadiver ){
dfun <- "betadiver"
} else if( method %in% distanceMethodList$dist ){
dfun <- "dist"
} else {
dfun <- "designdist"
}
# get the extra arguments to pass to functions (this can be empty)
extrargs <- list(...)
# If necessary (non phyloseq funs), enforce orientation, build function.
# disambiguate type argument... Must be "species" for vegan integration...
# The following should all work: "OTUs", "OTU", "otus", "Taxas", "site"
type <- gsub("(OTU(s)?)|(taxa(s)?)|(Species)", "species", type, ignore.case = TRUE)
# The following should all work: "SaMplE", "Samples", "site", "sites"
type <- gsub("(Sample(s)?)|(site(s)?)", "samples", type, ignore.case = TRUE)
# Test type, and enforce orientation accordingly
if( type == "species"){
# For species-distance, species need to be rows (vegan-style)
if( !taxa_are_rows(OTU) ){OTU <- t(OTU)}
} else if( type == "samples" ){
# For sample-distance, samples need to be rows (vegan-style)
if( taxa_are_rows(OTU) ){OTU <- t(OTU)}
} else {
stop("type argument must be one of \n (1) samples \n or \n (2) species")
}
OTU <- as(OTU, "matrix")
fun.args <- c(list(OTU, method=method), extrargs)
return( do.call(dfun, fun.args) )
})
#' @rdname distance
setMethod("distance", c("phyloseq", "character"), function(physeq, method, type="samples", ...){
# Only one method at a time.
if(length(method) > 1){
stop("`distance` only accepts one method at a time. ",
"You provided ", length(method), " methods. ")
}
if(length(method) < 1 | is.na(method)){
stop("You must specify a `method` argument. \nIt was missing/NA. \nSee `?distanceMethodList`")
}
# Regular Expression detect/convert unifrac/weighted-UniFrac args
method <- gsub("^(u.*)*unifrac$", "unifrac", method, ignore.case = TRUE)
method <- gsub("^w.*unifrac$", "wunifrac", method, ignore.case = TRUE)
# Distances that require a phyloseq object
# because they make use of additional information (e.g. a tree)
if( method == "unifrac" ){ return(UniFrac(physeq, ...)) }
if( method == "wunifrac" ){ return(UniFrac(physeq, weighted=TRUE, ...)) }
if( method == "dpcoa" ){
# Remove diagnol entries from "dist" object returned in `RaoDis` slot.
return(as.dist(DPCoA(physeq, ...)$RaoDis, diag=FALSE))
}
# Else, dispatch to OTU table method
return(distance(otu_table(physeq), method, type, ...))
})
################################################################################
#' List of distance method keys supported in \code{\link[phyloseq]{distance}}
#'
#' Distance methods should be specified by exact string match.
#' Cannot do partial matching for all options,
#' because too many similar options in downstream method dispatch.
#'
#' @format A list of character vectors.
#' Every entry specifies a supported distance method.
#' Names in the list indicate which downstream function
#' is being utilized for further details.
#' Same functions are linked in the itemized list below.
#'
#' \describe{
#' \item{\code{unifrac}}{\code{\link[phyloseq]{UniFrac}}}
#' \item{\code{wunifrac}}{\code{\link[phyloseq]{UniFrac}}}
#' \item{\code{dpcoa}}{\code{\link[phyloseq]{DPCoA}}}
#' \item{\code{jsd}}{\code{\link{JSD}}}
#' \item{\code{manhattan}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{euclidean}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{canberra}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{bray}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{kulczynski}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{jaccard}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{gower}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{altGower}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{morisita}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{horn}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{mountford}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{raup}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{binomial}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{chao}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{cao}}{\code{\link[vegan]{vegdist}}}
#' \item{\code{w}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{-}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{c}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{wb}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{r}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{I}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{e}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{t}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{me}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{j}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{sor}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{m}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{-}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{co}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{cc}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{g}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{-}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{l}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{hk}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{rlb}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{sim}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{gl}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{z}}{\code{\link[vegan]{betadiver}}}
#' \item{\code{maximum}}{\code{\link[stats]{dist}}}
#' \item{\code{binary}}{\code{\link[stats]{dist}}}
#' \item{\code{minkowski}}{\code{\link[stats]{dist}}}
#' \item{\code{ANY}}{\code{\link[vegan]{designdist}}}
#' }
#'
#' @seealso
#' \code{\link[phyloseq]{distance}}
#'
#' @export
#'
#' @examples
#' distanceMethodList
distanceMethodList <- list(
UniFrac = c("unifrac", "wunifrac"),
DPCoA = "dpcoa",
JSD = "jsd",
# The methods supported by vegan::vegdist function.
vegdist = c("manhattan", "euclidean", "canberra", "bray",
"kulczynski", "jaccard", "gower", "altGower", "morisita", "horn",
"mountford", "raup" , "binomial", "chao", "cao"),
# The methods supported by vegan::betadiver function.
betadiver = c("w", "-1", "c", "wb", "r", "I", "e", "t", "me", "j",
"sor", "m", "-2", "co", "cc", "g", "-3", "l", "19", "hk", "rlb",
"sim", "gl", "z"),
dist = c("maximum", "binary", "minkowski"),
designdist = "ANY"
)
################################################################################
# Shannon-Jensen Divergence, in R.
################################################################################
#' @keywords internal
phyloseq_JSD_pair <- function(x, y){
# Function to compute Shannon-Jensen Divergence
# x and y are the frequencies for the same p categories
# Assumes relative abundance transformation already happened (for efficiency)
# Define the mean point
m <- (x+y)/2
# Define each samples component
P1 <- x*log(x/m)
P2 <- y*log(y/m)
# In the case of zeroes entries log is undefined, JSD is defined as zero
P1[!is.finite(P1)] <- 0
P2[!is.finite(P2)] <- 0
d <- (P1+P2)/2
return(sum(d, na.rm = TRUE))
}
################################################################################
#' Calculate the Jensen-Shannon Divergence (distance)
#'
#' This is a phyloseq-specific implementation of the Jensen-Shannon Divergence
#' for comparing pairs of microbial communities (samples) in an experiment.
#' The expectation is that you have many samples (say. more than two) and you
#' want a distance matrix on which will perform further analysis. \code{JSD} is
#' intended to be ``wrapped'' by the more general \code{\link{distance}}
#' function in phyloseq, and it can be invoked using \code{"jsd"} as the
#' argument to the \code{method} parameter of \code{\link{distance}}.
#'
#' One of the motivations for providing JSD in phyloseq was its recent use in
#' the analysis of the \code{\link{enterotype}} dataset.
#'
#' @param physeq (Required). \code{\link{phyloseq-class}}.
#' The phyloseq data on which to compute the
#' pairwise sample distance matrix.
#'
#' @return An object of class ``\code{\link{dist}}'' suitable for certain
#' ordination methods and other distance-based analyses.
#' See \code{\link{distance}}.
#'
#' @seealso
#' \code{\link{distance}}
#'
#' \code{\link{enterotype}}
#'
#' \url{http://en.wikipedia.org/wiki/Jensen-Shannon_divergence}
#'
#' @references
#' Jensen-Shannon Divergence and Hilbert space embedding.
#' Bent Fuglede and Flemming Topsoe University of Copenhagen,
#' Department of Mathematics
#' \url{http://www.math.ku.dk/~topsoe/ISIT2004JSD.pdf}
#'
#' @author
#' Susan Holmes \email{susan@@stat.stanford.edu}.
#' Adapted for phyloseq by Paul J. McMurdie.
#'
#' @keywords internal
#' @examples
#' # library(doParallel) # Do this and next line only if you have multi-cores
#' # registerDoParallel(cores=6)
#' # data(enterotype)
#' # # ent.jsd <- JSD(enterotype, TRUE) # internal only
#' # ent.jsd <- distance(enterotype, "jsd", parallel=TRUE)
#' # ent.PCoA <- ordinate(enterotype, "PCoA", ent.jsd) # Perform principle coordinate analysis
#' # p <- plot_ordination(enterotype, ent.PCoA, color="Enterotype", shape="SeqTech")
#' # (p <- p + geom_point(size=5, alpha=0.5))
setGeneric("JSD", function(physeq){
standardGeneric("JSD")
})
setMethod("JSD", "ANY", function(physeq){
stop("JSD requires specific input classes. Check call and try again")
})
setMethod("JSD", "phyloseq", function(physeq){
JSD(otu_table(physeq))
})
setMethod("JSD", "otu_table", function(physeq){
# Coerce to species-as-columns
if(taxa_are_rows(physeq)){ physeq <- t(physeq) }
# Coerce physeq to matrix and pass on
return(JSD(as(physeq, "matrix")))
})
# Assumes samples are rows
setMethod("JSD", "matrix", function(physeq){
# Coerce to relative abundance by sample (row)
physeq <- sweep(physeq, 1, rowSums(physeq), "/")
# Parallelization not needed for this.
# Fix at sequential (eventually update code to remove parallelization complexity)
registerDoSEQ()
# create N x 2 matrix of all pairwise combinations of samples.
spn <- combn(row.names(physeq), 2, simplify=FALSE)
# initialize DistMat with NAs
DistMat <- matrix(NA, nrow(physeq), nrow(physeq))
# define the rows/cols of DistMat with the sample names (rownames)
rownames(DistMat) <- row.names(physeq)
colnames(DistMat) <- row.names(physeq)
# optionally-parallel implementation with foreach
distlist <- foreach( i = spn, .packages="phyloseq") %dopar% {
A <- i[1]
B <- i[2]
return( phyloseq_JSD_pair(physeq[A, ], physeq[B, ]) )
}
# return(distlist)
# This is in serial, but it is quick.
distlist2distmat <- function(i, spn, DL){
DistMat[ spn[[i]][2], spn[[i]][1] ] <<- DL[[i]]
}
junk <- sapply(1:length(spn), distlist2distmat, spn, distlist)
return(as.dist(DistMat))
})
##############################################################################
#' Calculate weighted or unweighted (Fast) UniFrac distance for all sample pairs.
#'
#' This function calculates the (Fast) UniFrac distance for all sample-pairs
#' in a \code{\link{phyloseq-class}} object.
#'
#' \code{UniFrac()} accesses the abundance
#' (\code{\link{otu_table-class}}) and a phylogenetic tree (\code{\link{phylo-class}})
#' data within an experiment-level (\code{\link{phyloseq-class}}) object.
#' If the tree and contingency table are separate objects, suggested solution
#' is to combine them into an experiment-level class
#' using the \code{\link{phyloseq}} function. For example, the following code
#'
#' \code{phyloseq(myotu_table, myTree)}
#'
#' returns a \code{phyloseq}-class object that has been pruned and comprises
#' the minimum arguments necessary for \code{UniFrac()}.
#'
#' Parallelization is possible for UniFrac calculated with the \code{\link{phyloseq-package}},
#' and is encouraged in the instances of large trees, many samples, or both.
#' Parallelization has been implemented via the \code{\link{foreach-package}}.
#' This means that parallel calls need to be preceded by 2 or more commands
#' that register the parallel ``backend''. This is acheived via your choice of
#' helper packages. One of the simplest seems to be the \emph{doParallel} package.
#'
#' For more information, see the following links on registering the ``backend'':
#'
#' \emph{foreach} package manual:
#'
#' \url{http://cran.r-project.org/web/packages/foreach/index.html}
#'
#' Notes on parallel computing in \code{R}. Skip to the section describing
#' the \emph{foreach Framework}. It gives off-the-shelf examples for registering
#' a parallel backend using the \emph{doMC}, \emph{doSNOW}, or \emph{doMPI} packages:
#'
#' \url{http://trg.apbionet.org/euasiagrid/docs/parallelR.notes.pdf}
#'
#' Furthermore, as of \code{R} version \code{2.14.0} and higher, a parallel package
#' is included as part of the core installation, \code{\link{parallel-package}},
#' and this can be used as the parallel backend with the \code{\link{foreach-package}}
#' using the adaptor package ``doParallel''.
#' \url{http://cran.r-project.org/web/packages/doParallel/index.html}
#'
#' See the vignette for some simple examples for using doParallel.
#' \url{http://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf}
#'
#' UniFrac-specific examples for doParallel are provided in the example
#' code below.
#'
#' @usage UniFrac(physeq, weighted=FALSE, normalized=TRUE, parallel=FALSE, fast=TRUE)
#'
#' @param physeq (Required). \code{\link{phyloseq-class}}, containing at minimum
#' a phylogenetic tree (\code{\link{phylo-class}}) and
#' contingency table (\code{\link{otu_table-class}}). See
#' examples below for coercions that might be necessary.
#'
#' @param weighted (Optional). Logical. Should use weighted-UniFrac calculation?
#' Weighted-UniFrac takes into account the relative abundance of species/taxa
#' shared between samples, whereas unweighted-UniFrac only considers
#' presence/absence. Default is \code{FALSE}, meaning the unweighted-UniFrac
#' distance is calculated for all pairs of samples.
#'
#' @param normalized (Optional). Logical. Should the output be normalized such that values
#' range from 0 to 1 independent of branch length values? Default is \code{TRUE}.
#' Note that (unweighted) \code{UniFrac} is always normalized by total branch-length,
#' and so this value is ignored when \code{weighted == FALSE}.
#'
#' @param parallel (Optional). Logical. Should execute calculation in parallel,
#' using multiple CPU cores simultaneously? This can dramatically hasten the
#' computation time for this function. However, it also requires that the user
#' has registered a parallel ``backend'' prior to calling this function.
#' Default is \code{FALSE}. If FALSE, UniFrac will register a serial backend
#' so that \code{foreach::\%dopar\%} does not throw a warning.
#'
#' @param fast (Optional). Logical. DEPRECATED.
#' Do you want to use the ``Fast UniFrac''
#' algorithm? Implemented natively in the \code{phyloseq-package}.
#' \code{TRUE} is now the only supported option.
#' There should be no difference in the output between the two algorithms.
#' Moreover, the original UniFrac algorithm
#' only outperforms this implementation of fast-UniFrac if the datasets are so
#' small
#' (approximated by the value of \code{ntaxa(physeq) * nsamples(physeq)})
#' that the difference in time is inconsequential (less than 1 second).
#' In practice it does not appear that this parameter should
#' have ever been set to \code{FALSE}, and therefore
#' the original UniFrac implementation perhaps never should have been supported here.
#' For legacy code support the option is now deprecated here
#' (the implementation was an internal function, anyway)
#' and the \code{fast} option will remain for one release cycle before
#' being removed completely
#' in order to avoid causing unsupported-argument errors.
#'
#' @return a sample-by-sample distance matrix, suitable for NMDS, etc.
#'
#' @seealso
#'
#' \code{\link{distance}}
#'
#' \code{unifrac} in the picante package.
#'
#' @references
#'
#' \url{http://bmf.colorado.edu/unifrac/}
#'
#' The main implementation (Fast UniFrac) is adapted from the algorithm's
#' description in:
#'
#' Hamady, Lozupone, and Knight,
#' ``\href{http://www.nature.com/ismej/journal/v4/n1/full/ismej200997a.html}{Fast UniFrac:}
#' facilitating high-throughput phylogenetic analyses of
#' microbial communities including analysis of pyrosequencing and PhyloChip data.''
#' The ISME Journal (2010) 4, 17--27.
#'
#' See also additional descriptions of UniFrac in the following articles:
#'
#' Lozupone, Hamady and Knight, ``UniFrac - An Online Tool for Comparing Microbial
#' Community Diversity in a Phylogenetic Context.'', BMC Bioinformatics 2006, 7:371
#'
#' Lozupone, Hamady, Kelley and Knight, ``Quantitative and qualitative (beta)
#' diversity measures lead to different insights into factors that structure
#' microbial communities.'' Appl Environ Microbiol. 2007
#'
#' Lozupone C, Knight R. ``UniFrac: a new phylogenetic method for comparing microbial
#' communities.'' Appl Environ Microbiol. 2005 71 (12):8228-35.
#'
#' @docType methods
#' @export
#' @import foreach
#' @rdname UniFrac-methods
#' @examples
#' ################################################################################
#' # Perform UniFrac on esophagus data
#' ################################################################################
#' data("esophagus")
#' (y <- UniFrac(esophagus, TRUE))
#' UniFrac(esophagus, TRUE, FALSE)
#' UniFrac(esophagus, FALSE)
#' # ################################################################################
#' # # Now try a parallel implementation using doParallel, which leverages the
#' # # new 'parallel' core package in R 2.14.0+
#' # # Note that simply loading the 'doParallel' package is not enough, you must
#' # # call a function that registers the backend. In general, this is pretty easy
#' # # with the 'doParallel package' (or one of the alternative 'do*' packages)
#' # #
#' # # Also note that the esophagus example has only 3 samples, and a relatively small
#' # # tree. This is fast to calculate even sequentially and does not warrant
#' # # parallelized computation, but provides a good quick example for using UniFrac()
#' # # in a parallel fashion. The number of cores you should specify during the
#' # # backend registration, using registerDoParallel(), depends on your system and
#' # # needs. 3 is chosen here for convenience. If your system has only 2 cores, this
#' # # will probably fault or run slower than necessary.
#' # ################################################################################
#' # library(doParallel)
#' # data(esophagus)
#' # # For SNOW-like functionality (works on Windows):
#' # cl <- makeCluster(3)
#' # registerDoParallel(cl)
#' # UniFrac(esophagus, TRUE)
#' # # Force to sequential backed:
#' # registerDoSEQ()
#' # # For multicore-like functionality (will probably not work on windows),
#' # # register the backend like this:
#' # registerDoParallel(cores=3)
#' # UniFrac(esophagus, TRUE)
#' ################################################################################
setGeneric("UniFrac", function(physeq, weighted=FALSE, normalized=TRUE, parallel=FALSE, fast=TRUE){
standardGeneric("UniFrac")
})
################################################################################
#' @aliases UniFrac,phyloseq-method
#' @rdname UniFrac-methods
#' @importFrom ape is.rooted
#' @importFrom ape root
setMethod("UniFrac", "phyloseq", function(physeq, weighted=FALSE, normalized=TRUE, parallel=FALSE, fast=TRUE){
if(is.null(phy_tree(physeq)$edge.length)){
stop("Tree has no branch lengths. See tree$edge.length. Cannot compute UniFrac without branch lengths")
}
# Check if tree is rooted, set random root with warning if it is not.
if( !is.rooted(phy_tree(physeq)) ){
randoroot = sample(taxa_names(physeq), 1)
warning("Randomly assigning root as -- ", randoroot, " -- in the phylogenetic tree in the data you provided.")
phy_tree(physeq) <- root(phy=phy_tree(physeq), outgroup=randoroot, resolve.root=TRUE, interactive=FALSE)
if( !is.rooted(phy_tree(physeq)) ){
stop("Problem automatically rooting tree. Make sure your tree is rooted before attempting UniFrac calculation. See ?ape::root")
}
}
if( fast ){
fastUniFrac(physeq, weighted, normalized, parallel)
} else {
warning("Option `fast=FALSE` is deprecated. Only 'fast' UniFrac is supported in phyloseq.")
fastUniFrac(physeq, weighted, normalized, parallel)
}
})
################################################################################
# Fast UniFrac for R.
# Adapted from The ISME Journal (2010) 4, 17-27; doi:10.1038/ismej.2009.97;
# http://www.nature.com/ismej/journal/v4/n1/full/ismej200997a.html
################################################################################
#' @importFrom ape prop.part
#' @importFrom ape reorder.phylo
#' @importFrom ape node.depth
#' @importFrom ape node.depth.edgelength
#' @keywords internal
#' @import foreach
fastUniFrac <- function(physeq, weighted=FALSE, normalized=TRUE, parallel=FALSE){
# Access the needed components. Note, will error if missing in physeq.
OTU <- otu_table(physeq)
tree <- phy_tree(physeq)
# Some important checks.
if( is.null(tree$edge.length) ) {
stop("Tree has no branch lengths, cannot compute UniFrac")
}
if( !is.rooted(tree) ) {
stop("Rooted phylogeny required for UniFrac calculation")
}
### Some parallel-foreach housekeeping.
# If user specifies not-parallel run (the default), register the sequential "back-end"
if( !parallel ){ registerDoSEQ() }
# create N x 2 matrix of all pairwise combinations of samples.
spn <- combn(sample_names(physeq), 2, simplify=FALSE)
# Make sure OTU is in species-are-rows orientation
if( !taxa_are_rows(physeq) ){OTU <- t(OTU)}
# Convert to standard matrix
OTU <- as(OTU, "matrix")
# Enforce that tree and otu_table indices are the same order,
# by re-ordering OTU, if needed
if( !all(rownames(OTU) == taxa_names(tree)) ){
OTU <- OTU[taxa_names(tree), ]
}
########################################
# Build the requisite matrices as defined
# in the Fast UniFrac article.
########################################
## This only needs to happen once in a call to UniFrac.
## Notice that A and B do not appear in this section.
# Begin by building the edge descendants matrix (edge-by-sample)
# `edge_array`
#
# Create a list of descendants, starting from the first internal node (root)
ntip <- length(tree$tip.label)
if(ntip != ntaxa(physeq)) stop("Incompatible tree and OTU table!")
# Create a matrix that maps each internal node to its 2 descendants
# This matrix doesn't include the tips, so must use node#-ntip to index into it
node.desc <- matrix(tree$edge[order(tree$edge[,1]),][,2],byrow=TRUE,ncol=2)
# Define the edge_array object
# Right now this is a node_array object, each row is a node (including tips)
# It will be subset and ordered to match tree$edge later
edge_array <- matrix(0, nrow=ntip+tree$Nnode, ncol=nsamples(physeq),
dimnames=list(NULL, sample_names=sample_names(physeq)))
# Load the tip counts in directly
edge_array[1:ntip,] <- OTU
# Get a list of internal nodes ordered by increasing depth
ord.node <- order(node.depth(tree))[(ntip+1):(ntip+tree$Nnode)]
# Loop over internal nodes, summing their descendants to get that nodes count
for(i in ord.node){
edge_array[i,] <- colSums(edge_array[node.desc[i-ntip,], , drop=FALSE], na.rm = TRUE)
}
# Keep only those with a parental edge (drops root) and order to match tree$edge
edge_array <- edge_array[tree$edge[,2],]
# Remove unneeded variables.
rm(node.desc)
# If unweighted-UniFrac, coerce to a presence-absence contingency, occ
if(!weighted){
# For unweighted UniFrac, convert the edge_array to an occurrence (presence/absence binary) array
edge_occ <- (edge_array > 0) - 0
}
if( weighted & normalized ){
# This is only relevant to weighted-UniFrac.
# For denominator in the normalized distance, we need the age of each tip.
# 'z' is the tree in postorder order used in calls to .C
# Descending order of left-hand side of edge (the ancestor to the node)
z = reorder.phylo(tree, order="postorder")
# Call phyloseq-internal function that in-turn calls ape's internal
# horizontal position function, in C, using the re-ordered phylo object, `z`
tipAges = node.depth.edgelength(tree)
# Keep only the tips, and add the tip labels in case `z` order differs from `tree`
tipAges <- tipAges[1:length(tree$tip.label)]
names(tipAges) <- z$tip.label
# Explicitly re-order tipAges to match OTU
tipAges <- tipAges[rownames(OTU)]
}
########################################
# optionally-parallel implementation with foreach
########################################
samplesums = sample_sums(physeq)
distlist <- foreach( i = spn, .packages="phyloseq") %dopar% {
A <- i[1]
B <- i[2]
AT <- samplesums[A]
BT <- samplesums[B]
if( weighted ){
# weighted UniFrac
wUF_branchweight <- abs(edge_array[, A]/AT - edge_array[, B]/BT)
# calculate the w-UF numerator
numerator <- sum({tree$edge.length * wUF_branchweight}, na.rm = TRUE)
# if not-normalized weighted UniFrac, just return "numerator";
# the u-value in the w-UniFrac description
if(!normalized){
return(numerator)
} else {
# denominator (assumes tree-indices and otu_table indices are same order)
denominator <- sum({tipAges * (OTU[, A]/AT + OTU[, B]/BT)}, na.rm = TRUE)
# return the normalized weighted UniFrac values
return(numerator / denominator)
}
} else {
# Unweighted UniFrac
# Subset matrix to just columns A and B
edge_occ_AB <- edge_occ[, c(A, B)]
# Keep only the unique branches. Sum the lengths
edge_uni_AB_sum <- sum((tree$edge.length * edge_occ_AB)[rowSums(edge_occ_AB, na.rm=TRUE) < 2, ], na.rm=TRUE)
# Normalize this sum to the total branches among these two samples, A and B
uwUFpairdist <- edge_uni_AB_sum / sum(tree$edge.length[rowSums(edge_occ_AB, na.rm=TRUE) > 0])
return(uwUFpairdist)
}
}
# Initialize UniFracMat with NAs
UniFracMat <- matrix(NA_real_, nsamples(physeq), nsamples(physeq))
rownames(UniFracMat) <- colnames(UniFracMat) <- sample_names(physeq)
# Matrix-assign lower-triangle of UniFracMat. Then coerce to dist and return.
matIndices <- do.call(rbind, spn)[, 2:1]
# Take care of edge case where there are two samples -> 1 pair of indices -> rbind doesn't return a matrix
if(!is.matrix(matIndices)) matIndices <- matrix(matIndices, ncol=2)
UniFracMat[matIndices] <- unlist(distlist)
return(as.dist(UniFracMat))
}
################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.