Get Sample Scores

Description

an S4 method to a sample dataset that is scored by a given method.

Arguments

data

can be a matrix with one row per element or a list of vectors of different length, one for each element.

method

one of the ranking methods: 'mean' (default), 'median', 'mwtest' (two sample one sided mann-whitney test), 'ttest'(two sample one sided t-test).

decreasing

a boolean indicating the direction of the ranking.

bootstrap

a boolean indicating whether bootstrapping or subsampling is used.

Value

a vector containing the summary values by the given method for the sample dataset.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# generate dataset
d<-replicate(4,sample(1:10,10,replace=FALSE))
rownames(d)<-letters[1:10]

# rank aggregation on the dataset using two base methods
aggregRank(d, method='mean')
aggregRank(d, method='median')

# calculate summary statistic from the data
summaryStats(d, method='mean')
summaryStats(d, method='RSA')

# calculating replicate scores from different summary statistics
scores<-getSampleScores(d,'mean',decreasing=FALSE,bootstrap=TRUE)
scores<-getSampleScores(d,'mwtest',decreasing=FALSE,bootstrap=TRUE)

# perform RSA analysis

# get RSA format of data
rsaData<-dataFormatRSA(d)
# set RSA options
opts<-list(LB=min(d),UB=max(d),reverse=FALSE)
# run the RSA analysis
r<-runRSA(rsaData,opts)
# directly obtain the per gene RSA ranking from the data
r<-uniqueRSARanking(rsaData,opts)

# get stable Ranking, stable setsizes and the Pi matrix for default settings
# and stability threshold of 0.9
s<-getStability(d,0.9)

# run default stability ranking
s<-stabilityRanking(d)

# using an accessor function on the RankSummary object
stabRank(s)

# summarize a RankSummary object
summary(s)

# generate a rank matrix from a RankSummary object
getRankmatrix(s)