Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
knitr::opts_chunk$set(echo = FALSE)
options(repos = c(CRAN = "http://cran.rstudio.com"))
quiet_load_all_CRAN <- function(...) {
for (pkg in list(...)) {
if (require(pkg, quietly = TRUE, character.only = TRUE)) next
invisible(install.packages(
pkg, quiet = TRUE, verbose = FALSE, character.only = TRUE
))
suppressPackageStartupMessages(invisible(
require(pkg, quietly = TRUE, character.only = TRUE)
))
}
}
# load packages
quiet_load_all_CRAN("ggplot2", "cowplot", "Seurat", "dplyr")
## ----setup--------------------------------------------------------------------
suppressPackageStartupMessages(library(APackOfTheClones))
# load data
pbmc <- get(data("combined_pbmc"))
## ----load_data, eval = TRUE, echo = FALSE, include = FALSE--------------------
pbmc <- get(data("combined_pbmc"))
## ----setup_seurat, echo = TRUE, eval = FALSE----------------------------------
# library(scRepertoire)
#
# # A seurat object named `pbmc` is loaded with a corresponding `contig_list`
# pbmc <- scRepertoire::combineExpression(
# scRepertoire::combineTCR(
# contig_list,
# samples = c("P17B", "P17L", "P18B", "P18L", "P19B", "P19L", "P20B", "P20L"),
# removeNA = FALSE,
# removeMulti = FALSE,
# filterMulti = FALSE
# ),
# pbmc,
# cloneCall = "gene",
# proportion = TRUE
# )
## ----actual_print_pbmc, eval = TRUE, echo = TRUE------------------------------
print(pbmc)
## ----echo = TRUE, eval = FALSE------------------------------------------------
# # Here is the function ran with its default parameters
# pbmc <- RunAPOTC(pbmc)
#
# #> Initializing APOTC run...
# #> * Setting `clone_scale_factor` to 0.3
# #> * id for this run: umap;CTstrict;_;_
# #>
# #> Packing clones into clusters
# #> [==================================================] 100%
# #>
# #> repulsing all clusters | max iterations = 20
# #> [==================================================] 100%
# #>
# #> Completed successfully, time elapsed: 0.155 seconds
# #>
## ----runapotc_default, include = FALSE----------------------------------------
pbmc <- RunAPOTC(pbmc, verbose = FALSE)
## ----runapotc2, echo = TRUE---------------------------------------------------
pbmc <- RunAPOTC(
pbmc, run_id = "sample17", orig.ident = c("P17B", "P17L"), verbose = FALSE
)
## ----apotcplot_subset_params, eval = FALSE------------------------------------
# reduction_base = NULL,
# clonecall = NULL,
# ...,
# extra_filter = NULL,
# alt_ident = NULL
## ----apotcplot, echo = TRUE---------------------------------------------------
# Here, plots for samples 17 - 20 as seen in the previous vignette are made, where
# `orig.ident` is a custom column in the example data with levels corresponding to sample ids:
# ("P17B" "P17L" "P18B" "P18L" "P19B" "P19L" "P20B" "P20L").
pbmc <- RunAPOTC(
pbmc, run_id = "P17", orig.ident = c("P17B", "P17L"), verbose = FALSE
)
pbmc <- RunAPOTC(
pbmc, run_id = "P18", orig.ident = c("P18B", "P18L"), verbose = FALSE
)
pbmc <- RunAPOTC(
pbmc, run_id = "P19", orig.ident = c("P19B", "P19L"), verbose = FALSE
)
pbmc <- RunAPOTC(
pbmc, run_id = "P20", orig.ident = c("P20B", "P20L"), verbose = FALSE
)
cowplot::plot_grid(
APOTCPlot(pbmc, run_id = "P17", retain_axis_scales = TRUE, add_size_legend = FALSE),
APOTCPlot(pbmc, run_id = "P18", retain_axis_scales = TRUE, add_size_legend = FALSE),
APOTCPlot(pbmc, run_id = "P19", retain_axis_scales = TRUE, add_size_legend = FALSE),
APOTCPlot(pbmc, retain_axis_scales = TRUE, add_size_legend = FALSE), # defaults to latest
labels = c("17", "18", "19", "20")
)
## ----echo = TRUE, eval = FALSE------------------------------------------------
# new_rad_scale_factor = NULL,
# new_clone_scale_factor = NULL,
# relocate_cluster = NULL,
# relocation_coord = NULL,
# nudge_cluster = NULL,
# nudge_vector = NULL,
# recolor_cluster = NULL,
# new_color = NULL,
# rename_label = NULL,
# new_label = NULL,
# relocate_label = NULL,
# label_relocation_coord = NULL,
# nudge_label = NULL,
# label_nudge_vector = NULL,
# verbose = TRUE
## ----first_four_labeled, echo = TRUE------------------------------------------
# Do a run with just the first 4 seurat clusters, and rename labels
pbmc <- RunAPOTC(
pbmc,
run_id = "first_four",
seurat_clusters = 1:4,
verbose = FALSE
)
pbmc <- AdjustAPOTC(
pbmc,
run_id = "first_four",
rename_label = 1:4,
new_label = letters[1:4],
verbose = FALSE
)
APOTCPlot(
pbmc,
run_id = "first_four",
show_labels = TRUE,
retain_axis_scales = TRUE
)
## ----repulse_again, echo = TRUE-----------------------------------------------
pbmc <- pbmc %>%
RunAPOTC(run_id = "foo", verbose = FALSE) %>%
AdjustAPOTC(
run_id = "foo",
repulse = TRUE,
repulsion_threshold = 0.5,
verbose = FALSE
)
APOTCPlot(
pbmc,
show_labels = TRUE,
retain_axis_scales = TRUE,
add_size_legend = FALSE
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.