Nothing
#' Conover-Iman Test for Multiple Comparisons (Non-Parametric)
#'
#' Performs non-parametric pairwise comparisons based on rank-transformed data using
#' the Conover-Iman procedure. This method is typically applied as a post hoc test
#' following a significant Kruskal-Wallis test to identify specific group differences.
#'
#' The Conover-Iman test uses rank-based t-statistics, offering improved statistical
#' power over Dunn's test while maintaining flexibility in sample size.
#'
#' Advantages:
#' - More powerful than Dunn’s test, especially with moderate group differences.
#' - Robust to non-normal data and suitable for ordinal or skewed distributions.
#' - Allows for unequal sample sizes across groups.
#'
#' Disadvantages:
#' - Sensitive to heteroscedasticity (non-constant variances).
#' - Requires appropriate p-value adjustment to control the family-wise error rate.
#'
#' @param formula A formula of the form \code{y ~ group}, where \code{y} is a numeric variable
#' and \code{group} is a factor indicating group membership.
#' @param data A data frame containing the variables specified in the formula.
#' @param alpha Significance level for hypothesis testing (default is 0.05).
#' @param method.p Method used to adjust p-values for multiple comparisons (default is \code{"holm"}).
#'
#' @return An object of class \code{"conover"} and \code{"comparaciones"}, containing:
#' \itemize{
#' \item \code{Resultados}: A data frame with pairwise comparisons, t-statistics, raw and adjusted p-values, and significance markers.
#' \item \code{Promedios}: A named numeric vector with mean ranks for each group.
#' \item \code{Orden_Medias}: A character vector with group names sorted from highest to lowest rank.
#' \item \code{Metodo}: A string describing the method used ("Conover (no parametrico)").
#' }
#'
#' @references Conover, W. J. & Iman, R. L. (1979). "Multiple comparisons using rank sums." \emph{Technometrics}, 21(4), 489–495.
#'
#' @examples
#'data(d_e, package = "Analitica")
#'ConoverTest(Sueldo_actual ~ labor, data = d_e)
#'
#'
#' @export
#' @importFrom stats pt p.adjust
#' @importFrom utils combn
ConoverTest <- function(formula, data, alpha = 0.05, method.p = "holm") {
mf <- model.frame(formula, data)
respuesta <- mf[[1]]
grupo <- as.factor(mf[[2]])
niveles <- levels(grupo)
k <- length(niveles)
N <- length(respuesta)
ranks <- rank(respuesta)
n <- table(grupo)
Rj <- tapply(ranks, grupo, mean)
comparaciones <- combn(niveles, 2, simplify = FALSE)
resultados <- data.frame(
Comparacion = character(),
t_value = numeric(),
p_value = numeric(),
p_ajustada = numeric(),
Significancia = character(),
stringsAsFactors = FALSE
)
S2 <- (N * (N + 1)) / 12
t_vals <- numeric(length(comparaciones))
p_vals <- numeric(length(comparaciones))
for (i in seq_along(comparaciones)) {
par <- comparaciones[[i]]
g1 <- par[1]; g2 <- par[2]
dif <- abs(Rj[g1] - Rj[g2])
se <- sqrt(S2 * (1 / n[g1] + 1 / n[g2]))
t <- dif / se
df <- N - k # Conservative approximation
p <- 2 * pt(-abs(t), df)
t_vals[i] <- t
p_vals[i] <- p
}
p_ajustada <- p.adjust(p_vals, method = method.p)
sig <- ifelse(p_ajustada < 0.001, "***",
ifelse(p_ajustada < 0.01, "**",
ifelse(p_ajustada < 0.05, "*", "ns")))
for (i in seq_along(comparaciones)) {
comp <- paste(sort(comparaciones[[i]]), collapse = " - ")
resultados[i, ] <- list(
Comparacion = comp,
t_value = round(t_vals[i], 4),
p_value = round(p_vals[i], 4),
p_ajustada = round(p_ajustada[i], 4),
Significancia = sig[i]
)
}
out <- list(
Resultados = resultados,
Promedios = Rj,
Orden_Medias = names(sort(Rj, decreasing = TRUE)),
Metodo = "Conover (no parametrico)"
)
class(out) <- c("comparaciones", "conover")
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.