Nothing
#' Scheffé Test for Multiple Comparisons
#'
#' Performs Scheffé's post hoc test after fitting an ANOVA model. This test compares all possible
#' pairs of group means, using a critical value based on the F-distribution.
#'
#' The Scheffé test is a conservative method, making it harder to detect significant differences,
#' but reducing the likelihood of Type I errors (false positives). It is especially appropriate
#' when the comparisons were not pre-planned and the number of contrasts is large.
#'
#' Assumptions: normally distributed residuals and homogeneity of variances.
#'
#' Advantages:
#' - Very robust to violations of assumptions.
#' - Suitable for complex comparisons, not just pairwise.
#'
#' Disadvantages:
#' - Very conservative; reduced power.
#' - Not ideal for detecting small differences.
#'
#' @param modelo An object of class \code{aov} or \code{lm} representing an ANOVA model.
#' @param alpha Significance level (default is 0.05).
#'
#' @return An object of class \code{"scheffe"} and \code{"comparaciones"}, containing:
#' \itemize{
#' \item \code{Resultados}: A data frame of pairwise comparisons with difference, critical value, p-value, and significance code.
#' \item \code{Promedios}: A named numeric vector of group means.
#' \item \code{Orden_Medias}: A character vector with group names ordered from highest to lowest mean.
#' \item \code{Metodo}: A character string indicating the test name ("Scheffe").
#' }
#'
#' @references Scheffé, H. (1953). "A method for judging all contrasts in the analysis of variance." \emph{Biometrika}, 40(1/2), 87–104. <https://doi.org/10.1093/biomet/40.1-2.87>
#'
#' @importFrom stats qf
#' @importFrom utils combn
#' @export
#'
#' @examples
#' data(d_e, package = "Analitica")
#' mod <- aov(Sueldo_actual ~ as.factor(labor), data = d_e)
#' resultado <- ScheffeTest(mod)
#' summary(resultado)
#' plot(resultado)
ScheffeTest <- function(modelo, alpha = 0.05) {
factor_name <- names(modelo$xlevels)[1]
grupos <- modelo$model[[factor_name]]
respuesta <- modelo$model[[1]]
medias <- tapply(respuesta, grupos, mean)
n <- tapply(respuesta, grupos, length)
nombres_grupos <- names(medias)
orden_medias <- order(medias, decreasing = TRUE)
etiquetas_ordenadas <- nombres_grupos[orden_medias]
v1 <- modelo$rank - 1
v2 <- modelo$df.residual
MSerror <- deviance(modelo) / v2
Fcrit <- qf(1 - alpha, v1, v2)
comparaciones <- combn(nombres_grupos, 2, simplify = FALSE)
resultados <- data.frame(
Comparacion = character(),
Diferencia = numeric(),
Valor_Critico = numeric(),
p_value = numeric(),
Significancia = character(),
stringsAsFactors = FALSE
)
for (par in comparaciones) {
g1 <- par[1]
g2 <- par[2]
dif <- abs(medias[g1] - medias[g2])
SE <- MSerror * (1 / n[g1] + 1 / n[g2])
Fobs <- (dif^2) / SE
valor_critico <- sqrt(v1 * Fcrit * SE)
p_val <- 1 - pf(Fobs, v1, v2)
sig <- ifelse(p_val < 0.001, "***",
ifelse(p_val < 0.01, "**",
ifelse(p_val < 0.05, "*", "ns")))
comparacion <- paste(sort(c(g1, g2)), collapse = " - ")
resultados <- rbind(resultados, data.frame(
Comparacion = comparacion,
Diferencia = round(dif, 4),
Valor_Critico = round(valor_critico, 4),
p_value = round(p_val, 4),
Significancia = sig
))
}
out <- list(
Resultados = resultados,
Promedios = medias,
Orden_Medias = etiquetas_ordenadas,
Metodo = "Scheffe"
)
class(out) <- c("comparaciones", "scheffe")
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.