# R/BMTfit.mqde.R In BMT: The BMT Distribution

#'@title Minimum Quantile Distance Fit of the BMT Distribution to Non-censored
#'  Data.
#'
#'@description Fit of the BMT distribution to non-censored data by minimum
#'  quantile distance (mqde), which can also be called maximum quantile
#'  goodness-of-fit.
#'
#'@rdname BMTfit.mqde
#'@name BMTfit.mqde
#'
#'@details This function is not intended to be called directly but is internally
#'  called in \code{\link{BMTfit}} when used with the minimum quantile distance
#'  method.
#'
#'  \code{BMTfit.mqde} is based on the function \code{\link{mqdedist}} but it
#'  focuses on the minimum quantile distance parameter estimation for the BMT
#'  of univariate distributions).
#'
#'  Given the close-form expression of the quantile
#'  function, two optimization methods were added when the euclidean distance is
#'  selected: Coordinate descend (\code{"CD"}) and Newton-Rhapson (\code{"NR"}).
#'
#'@param data A numeric vector with the observed values for non-censored data.
#'@param probs A numeric vector of the probabilities for which the minimum
#'  quantile distance estimation is done. \eqn{p[k] = (k - 0.5) / n} (default).
#'@param qtype The quantile type used by the R \code{\link{quantile}} function
#'  to compute the empirical quantiles. Type 5 (default), i.e. \eqn{x[k]} is
#'  both the \eqn{k}th order statistic and the type 5 sample quantile of
#'  \eqn{p[k] = (k - 0.5) / n}.
#'@param dist The distance measure between observed and theoretical quantiles to
#'  be used. This must be one of "euclidean" (default), "maximum", or
#'  "manhattan". Any unambiguous substring can be given.
#'@param start A named list giving the initial values of parameters of the BMT
#'  distribution or a function of data computing initial values and returning a
#'  named list. (see the 'details' section of
#'@param fix.arg An optional named list giving the values of fixed parameters of
#'  the BMT distribution or a function of data computing (fixed) parameter
#'  values and returning a named list. Parameters with fixed value are thus NOT
#'  estimated. (see the 'details' section of
#'@param type.p.3.4 Type of parametrization asociated to p3 and p4. "t w" means
#'  tails weights parametrization (default) and "a-s" means asymmetry-steepness
#'  parametrization.
#'@param type.p.1.2 Type of parametrization asociated to p1 and p2. "c-d" means
#'  domain parametrization (default) and "l-s" means location-scale
#'  parametrization.
#'@param optim.method \code{"default"} (see the 'details' section of
#'  \code{\link{mledist}}) or optimization method to pass to
#'  \code{\link{optim}}. Given the close-form expression of the quantile
#'  function, two optimization methods were added when the euclidean distance is
#'  selected: Coordinate descend (\code{"CD"}) and Newton-Rhapson (\code{"NR"}).
#'@param custom.optim A function carrying the optimization (see the 'details'
#'@param weights an optional vector of weights to be used in the fitting process.
#'  Should be \code{NULL} or a numeric vector with strictly positive numbers.
#'  If non-\code{NULL}, weighted mqde is used, otherwise ordinary mqde.
#'@param silent A logical to remove or show warnings when bootstraping.
#'@param \dots Further arguments to be passed to generic functions or to the
#'  function \code{"mqdedist"}. See \code{\link{mqdedist}} for details.
#'
#'@return \code{BMTfit.mqde} returns a list with following components,
#'
#'  \item{estimate}{ the parameter estimates.}
#'
#'  \item{convergence}{ an integer code for the convergence of
#'  the user in the user-supplied optimization function.
#'
#'  \code{0} indicates successful convergence.
#'
#'  \code{1} indicates that the iteration limit of \code{\link{optim}} has been
#'  reached.
#'
#'  \code{10} indicates degeneracy of the Nealder-Mead simplex.
#'
#'  \code{100} indicates that \code{\link{optim}} encountered an internal error.
#'  }
#'
#'  \item{value}{the value of the corresponding objective function of the
#'  estimation method at the estimate.}
#'
#'  \item{hessian}{a symmetric matrix computed by \code{\link{optim}} as an
#'  estimate of the Hessian at the solution found or computed in the
#'  user-supplied optimization function.}
#'
#'  \item{loglik}{the log-likelihood value.}
#'
#'  \item{probs}{ the probability vector on which observed and theoretical
#'  quantiles were calculated. }
#'
#'  \item{dist}{ the name of the distance between observed and theoretical
#'  quantiles used. }
#'
#'  \item{optim.function}{the name of the optimization function used for maximum
#'  product of spacing.}
#'
#'  \item{optim.method}{when \code{\link{optim}} is used, the name of the
#'  algorithm used, \code{NULL} otherwise.}
#'
#'  \item{fix.arg}{the named list giving the values of parameters of the named
#'  distribution that must kept fixed rather than estimated or \code{NULL} if
#'  there are no such parameters. }
#'
#'  \item{fix.arg.fun}{the function used to set the value of \code{fix.arg} or
#'  \code{NULL}.}
#'
#'  \item{weights}{the vector of weigths used in the estimation process or
#'  \code{NULL}.}
#'
#'  \item{counts}{A two-element integer vector giving the number of calls to the
#'  log-likelihood function and its gradient respectively. This excludes those
#'  calls needed to compute the Hessian, if requested, and any calls to
#'  log-likelihood function to compute a finite-difference approximation to the
#'  user-supplied function or set to \code{NULL}.}
#'
#'  \item{optim.message}{A character string giving any additional information
#'  returned by the optimizer, or \code{NULL}. To understand exactly the
#'  message, see the source code.}
#'
#'@references Torres-Jimenez, C. J. (2017, September), \emph{Comparison of estimation
#'  methods for the BMT distribution}. ArXiv e-prints.
#'
#'  Torres-Jimenez, C. J. (2018), \emph{The BMT Item Response Theory model: A
#'  new skewed distribution family with bounded domain and an IRT model based on
#'  de Colombia, Sede Bogota.
#'
#'@seealso See \code{\link{BMT}} for the BMT density, distribution, quantile
#'  function and random deviates. See \code{\link{BMTfit.mme}},
#'  for functions that return an objetc of class \code{"fitdist"}.
#'
#'@author Camilo Jose Torres-Jimenez [aut,cre] \email{cjtorresj@unal.edu.co}
#'
#'@source Based on the function \code{\link{mqdedist}} which in turn is based on
#'  the function \code{\link{mledist}} of the R package:
#'
#'  Delignette-Muller ML and Dutang C (2015), \emph{fitdistrplus: An R Package
#'  for Fitting Distributions}. Journal of Statistical Software, 64(4), 1-34.
#'
#' @examples
#' # (1) basic fit by minimum quantile distance estimation
#' set.seed(1234)
#' x1 <- rBMT(n=100, p3=0.25, p4=0.75)
#' BMTfit.mqde(x1)
#'
#' # (2) quantile matching is a particular case of minimum quantile distance
#' BMTfit.mqde(x1, probs=c(0.2,0.4,0.6,0.8), qtype=7)
#'
#' # (3) maximum or manhattan instead of euclidean distance
#' BMTfit.mqde(x1, dist="maximum")
#' BMTfit.mqde(x1, dist="manhattan")
#'
#' # (4) how to change the optimisation method?
#' BMTfit.mqde(x1, optim.method="L-BFGS-B")
#' BMTfit.mqde(x1, custom.optim="nlminb")
#'
#' # (5) estimation of the tails weights parameters of the BMT
#' # distribution with domain fixed at [0,1]
#' BMTfit.mqde(x1, start=list(p3=0.5, p4=0.5), fix.arg=list(p1=0, p2=1))
#'
#' # (6) estimation of the asymmetry-steepness parameters of the BMT
#' # distribution with domain fixed at [0,1]
#' BMTfit.mqde(x1, start=list(p3=0, p4=0.5), type.p.3.4 = "a-s",
#'             fix.arg=list(p1=0, p2=1))
#'
#'@keywords distribution

######################
#' @rdname BMTfit
#' @export BMTfit.mqde
BMTfit.mqde <- function(data, probs = (1:length(data)-0.5)/length(data), qtype = 5, dist = "euclidean",
start = list(p3 = 0.5, p4 = 0.5, p1 = min(data) - 0.1, p2 = max(data) + 0.1),
fix.arg = NULL, type.p.3.4 = "t w", type.p.1.2 = "c-d",
optim.method = "Nelder-Mead", custom.optim = NULL, weights = NULL, silent = TRUE, ...){
# Control data
if (!(is.vector(data) & is.numeric(data) & length(data) > 1))
stop("data must be a numeric vector of length greater than 1")
# Control probs, qtype
if (!(is.vector(probs) & is.numeric(probs)) | anyNA(probs) | any(probs < 0 | probs > 1))
stop("probs must be a numeric vector with all elements greater than zero and less than one")
probs <- unique(sort(probs))
if (qtype < 0 || qtype > 9)
stop("wrong type for the R quantile function")
# Control dist
int.dist <- pmatch(dist, c("euclidean", "maximum", "manhattan"))
if (is.na(int.dist))
stop("invalid distance measure to be used")
if (int.dist == -1)
stop("ambiguous distance measure to be used")
# Control optim.method
if (is.null(custom.optim))
optim.method <- match.arg(optim.method, c("default", "Nelder-Mead", "BFGS", "CG",
"L-BFGS-B", "SANN", "Brent", "CD","NR"))
# Control start and fix.arg
start.arg <- start
if (is.vector(start.arg))
start.arg <- as.list(start.arg)
stnames <- names(start.arg)
fixnames <- names(fix.arg)

# Further arguments to be passed
my3dots <- list(...)
if (length(my3dots) == 0)
my3dots <- NULL
if (is.vector(data)) {
n <- length(data)
if (!(is.numeric(data) & n > 1))
stop("data must be a numeric vector of length greater than 1")
}
else
stop("Minimum quantile distance estimation is not yet available for censored data.")
# Control weights
if (!is.null(weights)) {
if (any(weights <= 0))
stop("weights should be a vector of numbers greater than 0")
if (length(weights) != n)
stop("weights should be a vector with a length equal to the observation number")
w <- sum(weights)
}
# Control maximum number of iterations
maxit <- ifelse(is.null(my3dots$control$maxit),3000,my3dots$control$maxit)
# Control type.p.3.4. It allows partial match.
TYPE.P.3.4 <- c("t w", "a-s") # tail weights or asymmetry-steepness
int.type.p.3.4 <- pmatch(type.p.3.4, TYPE.P.3.4)
if (is.na(int.type.p.3.4))
stop("invalid type of parametrization for parameters 3 and 4")
if (int.type.p.3.4 == -1)
stop("ambiguous type of parametrization for parameters 3 and 4")
# Control type.p.1.2. It allows partial match.
TYPE.P.1.2 <- c("c-d", "l-s") # domain or location-scale
int.type.p.1.2 <- pmatch(type.p.1.2, TYPE.P.1.2)
if (is.na(int.type.p.1.2))
stop("invalid type of parametrization for parameters 1 and 2")
if (int.type.p.1.2 == -1)
stop("ambiguous type of parametrization for parameters 1 and 2")
# Type of parametrizations are fixed parameters
fix.arg$type.p.3.4 <- type.p.3.4 fix.arg$type.p.1.2 <- type.p.1.2
# Establish box constraints according to parameters in start
npar <- length(stnames)
# Initialize all box constraints: (-Inf, Inf)
if(is.null(my3dots$lower)){ lower <- rep(-Inf, npar) # domain parametrization if (int.type.p.1.2 == 1) { # c has to be inside (-Inf, min(data)) # d has to be inside (max(data), Inf) lower[stnames == "p2"] <- max(data) + .epsilon } # location-scale parametrization else{ # sigma has to be inside (0, Inf) lower[stnames == "p2"] <- 0 + .epsilon } # tail weights parametrization if (int.type.p.3.4 == 1) { # Both tail weights have to be inside (0,1) lower[stnames == "p3" | stnames == "p4"] <- 0 + .epsilon } # asymmetry-steepness parametrization else{ # asymmetric has to be inside (-1, 1) # steepness has to be inside (0, 1) lower[stnames == "p3"] <- -1 + .epsilon lower[stnames == "p4"] <- 0 + .epsilon } } else{ lower <- my3dots$lower
my3dots$lower <- NULL } if(is.null(my3dots$upper)){
upper <- rep(Inf, npar)
# domain parametrization
if (int.type.p.1.2 == 1) {
# c has to be inside (-Inf, min(data))
upper[stnames == "p1"] <- min(data) - .epsilon
# d has to be inside (max(data), Inf)
}
# location-scale parametrization
# sigma has to be inside (0, Inf)
# tail weights parametrization
if (int.type.p.3.4 == 1) {
# Both tail weights have to be inside (0,1)
upper[stnames == "p3" | stnames == "p4"] <- 1 - .epsilon
}
# asymmetry-steepness parametrization
else{
# asymmetric has to be inside (-1, 1)
# steepness has to be inside (0, 1)
upper[stnames == "p3" | stnames == "p4"] <- 1 - .epsilon
}
}
else{
upper <- my3dots$upper my3dots$upper <- NULL
}
names(upper) <- names(lower) <- stnames
# nlminb optimization method
if(!is.null(custom.optim)){
if(custom.optim=="nlminb")
custom.optim <- .m.nlminb
# mqdedist function
mqde <- do.call(mqdedist, append(list(data, "BMT", probs = probs, qtype = qtype, dist = dist,
start = start, fix.arg = fix.arg, optim.method = optim.method,
lower = lower, upper = upper, custom.optim = custom.optim,
weights = weights, silent = silent), my3dots))
}
else{
if(optim.method == "CD"){
if(int.dist != 1)
stop("Coordinate descend (CD) optimization metod is only considered with euclidean distance")
# Change to tails curvature and domain parameterization
par <- append(start.arg, fix.arg)
if(int.type.p.3.4 != 1){
c.par <- BMTchangepars(par$p3, par$p4, par$type.p.3.4, par$p1, par$p2, par$type.p.1.2)
par$p3 <- c.par$p3
par$p4 <- c.par$p4
par$type.p.3.4 <- c.par$type.p.3.4
}
# Sample quantiles
if(qtype == 0)
sq <- data
else
sq <- quantile(data, probs = probs, type = qtype, names = FALSE)
t <- 0.5-cos((acos(2*probs-1)-2*pi)/3)
a <- 3 * t * (t - 1)^2
b <- 3 * t * t * (t - 1)
c <- t * t * (3 - 2 * t)
#
flag <- FALSE
iter <- 0
conv <- 0
message <- NULL
if(is.null(weights)){
# theorical quantiles
theoq <- do.call("qBMT", c(list(p = probs), as.list(par[stnames]), as.list(par[names(fix.arg)])))
# objective function
value <- sum((sq - theoq)^2)
repeat{
value.old <- value
iter <- iter + 1
if(!("p3" %in% fixnames) | !("p4" %in% fixnames)){
sx <- (sq - par$p1)/(par$p2 - par$p1) if(!("p4" %in% fixnames)){ a.b <- sum(a*b) b.b <- sum(b*b) b.c_sx <- sum(b*(c-sx)) if(!("p3" %in% fixnames)){ a.a <- sum(a*a) a.c_sx <- sum(a*(c-sx)) par$p3 <- (a.b * b.c_sx - b.b * a.c_sx ) / (a.a * b.b - a.b * a.b)
par$p3 <- unname(ifelse(par$p3 > upper["p3"], upper["p3"], par$p3)) par$p3 <- unname(ifelse(par$p3 < lower["p3"], lower["p3"], par$p3))
}
par$p4 <- (- par$p3 * a.b - b.c_sx) / b.b
par$p4 <- unname(ifelse(par$p4 > upper["p4"], upper["p4"], par$p4)) par$p4 <- unname(ifelse(par$p4 < lower["p4"], lower["p4"], par$p4))
}
else{
if(!("p3" %in% fixnames)){
par$p3 <- (- par$p4 * sum(a*b) - sum(a*(c-sx))) / sum(a*a)
par$p3 <- unname(ifelse(par$p3 > upper["p3"], upper["p3"], par$p3)) par$p3 <- unname(ifelse(par$p3 < lower["p3"], lower["p3"], par$p3))
}
}
}
else
flag <- TRUE
if(!("p1" %in% fixnames) | !("p2" %in% fixnames)){
tx <- a * par$p3 + b * par$p4 + c
mean.sq <- mean(sq)
mean.tx <- mean(tx)
if(!("p2" %in% fixnames)){
mean.tx2 <- mean(tx^2)
mean.sq.tx <- mean(sq * tx)
if(!("p1" %in% fixnames)){
par$p1 <- (mean.sq * mean.tx2 - mean.sq.tx * mean.tx) / (mean.tx2 - mean.tx^2) if(int.type.p.1.2 == 1) par$p1 <- unname(ifelse(par$p1 > upper["p1"], upper["p1"], par$p1))
}
par$p2 <- par$p1 + (mean.sq.tx - par$p1 * mean.tx) / mean.tx2 if(int.type.p.1.2 == 1) par$p2 <- unname(ifelse(par$p2 < lower["p2"], lower["p2"], par$p2))
}
else{
if(!("p1" %in% fixnames)){
par$p1 <- (mean.sq - par$p2 * mean.tx) / (1 - mean.tx)
if(int.type.p.1.2 == 1)
par$p1 <- unname(ifelse(par$p1 > upper["p1"], upper["p1"], par$p1)) } } } else flag <- TRUE # theorical quantiles theoq <- do.call("qBMT", c(list(p = probs), as.list(par[stnames]), as.list(par[names(fix.arg)]))) # objective function value <- sum((sq - theoq)^2) if(abs(value - value.old) < 1e-12 | iter == maxit | flag == TRUE) break } } else{ # theorical quantiles theoq <- do.call("qBMT", c(list(p = probs), as.list(par[stnames]), as.list(par[names(fix.arg)]))) # objective function value <- sum(weights*(sq - theoq)^2) repeat{ value.old <- value iter <- iter + 1 if(!("p3" %in% fixnames) | !("p4" %in% fixnames)){ sx <- (sq - par$p1)/(par$p2 - par$p1)
if(!("p4" %in% fixnames)){
a.b <- sum(weights*a*b)
b.b <- sum(weights*b*b)
b.c_sx <- sum(weights*b*(c-sx))
if(!("p3" %in% fixnames)){
a.a <- sum(weights*a*a)
a.c_sx <- sum(weights*a*(c-sx))
par$p3 <- (a.b * b.c_sx - b.b * a.c_sx ) / (a.a * b.b - a.b * a.b) par$p3 <- unname(ifelse(par$p3 > upper["p3"], upper["p3"], par$p3))
par$p3 <- unname(ifelse(par$p3 < lower["p3"], lower["p3"], par$p3)) } par$p4 <- (- par$p3 * a.b - b.c_sx) / b.b par$p4 <- unname(ifelse(par$p4 > upper["p4"], upper["p4"], par$p4))
par$p4 <- unname(ifelse(par$p4 < lower["p4"], lower["p4"], par$p4)) } else{ if(!("p3" %in% fixnames)){ par$p3 <- (- par$p4 * sum(weights*a*b) - sum(weights*a*(c-sx))) / sum(weights*a*a) par$p3 <- unname(ifelse(par$p3 > upper["p3"], upper["p3"], par$p3))
par$p3 <- unname(ifelse(par$p3 < lower["p3"], lower["p3"], par$p3)) } } } else flag <- TRUE if(!("p1" %in% fixnames) | !("p2" %in% fixnames)){ tx <- a * par$p3 + b * par$p4 + c mean.sq <- sum(weights * sq) / w mean.tx <- sum(weights * tx) / w if(!("p2" %in% fixnames)){ mean.tx2 <- sum(weights * tx^2) / w mean.sq.tx <- sum(weights * sq * tx) / w if(!("p1" %in% fixnames)){ par$p1 <- (mean.sq * mean.tx2 - mean.sq.tx * mean.tx) / (mean.tx2 - mean.tx^2)
if(int.type.p.1.2 == 1)
par$p1 <- unname(ifelse(par$p1 > upper["p1"], upper["p1"], par$p1)) } par$p2 <- par$p1 + (mean.sq.tx - par$p1 * mean.tx) / mean.tx2
if(int.type.p.1.2 == 1)
par$p2 <- unname(ifelse(par$p2 < lower["p2"], lower["p2"], par$p2)) } else{ if(!("p1" %in% fixnames)){ par$p1 <- (mean.sq - par$p2 * mean.tx) / (1 - mean.tx) if(int.type.p.1.2 == 1) par$p1 <- unname(ifelse(par$p1 > upper["p1"], upper["p1"], par$p1))
}
}
}
else
flag <- TRUE
# theorical quantiles
theoq <- do.call("qBMT", c(list(p = probs), as.list(par[stnames]), as.list(par[names(fix.arg)])))
# objective function
value <- sum(weights*(sq - theoq)^2)
if(abs(value - value.old) < 1e-12 | iter == maxit | flag == TRUE)
break
}
}
if(iter == maxit){
conv <- 1
message <- "Maximum number of iterations"
}
# Restore to the given parameterization
if(int.type.p.3.4 != 1){
c.par <- BMTchangepars(par$p3, par$p4, par$type.p.3.4, par$p1, par$p2, par$type.p.1.2)
par$p3 <- c.par$p3
par$p4 <- c.par$p4
par$type.p.3.4 <- c.par$type.p.3.4
}
mqde <- list(estimate = unlist(par[stnames]), convergence = conv, value = value,
hessian = NULL, probs = probs, dist = dist,
optim.function = NULL, fix.arg = fix.arg,
loglik = .loglik(par[stnames], fix.arg, data, "dBMT"),
optim.method = "CD", fix.arg.fun = NULL,
counts = c(iter, NA), optim.message = message)
}
else if(optim.method == "NR"){
if(int.dist != 1)
stop("Newton-Raphson (NR) optimization method is only considered with euclidean distance")
# Change to tails curvature and domain parameterization
par <- append(start.arg, fix.arg)
if(int.type.p.3.4 != 1 | int.type.p.1.2 != 1){
c.par <- BMTchangepars(par$p3,par$p4,par$type.p.3.4,par$p1,par$p2,par$type.p.1.2)
if(int.type.p.3.4 != 1){
par$p3 <- c.par$p3
par$p4 <- c.par$p4
par$type.p.3.4 <- c.par$type.p.3.4
}
if(int.type.p.1.2 != 1){
par$p1 <- c.par$p1
par$p2 <- c.par$p2
par$type.p.1.2 <- c.par$type.p.1.2
}
}
# Sample quantiles
if(qtype == 0)
sq <- data
else
sq <- quantile(data, probs = probs, type = qtype, names = FALSE)
t <- 0.5-cos((acos(2*probs-1)-2*pi)/3)
a <- 3 * t * (t - 1)^2
b <- 3 * t * t * (t - 1)
c <- t * t * (3 - 2 * t)
#
iter <- 0
conv <- 0
message <- NULL
if(is.null(weights)){
repeat{
iter <- iter + 1
R <- par$p2 - par$p1
sx <- (sq - par$p1) / R tx <- a * par$p3 + b * par$p4 + c sx_tx <- sx - tx sxsx_tx <- 2*sx - tx a.sx_tx <- sum(a * sx_tx) b.sx_tx <- sum(b * sx_tx) sx.sx_tx <- sum(sx * sx_tx) kl.1_kl <- par$p3 * (1 - par$p3) kr.1_kr <- par$p4 * (1 - par$p4) gradient <- -2 * c(kl.1_kl * a.sx_tx, kr.1_kr * b.sx_tx, sx.sx_tx, sum(sx_tx) / R) hessian <- diag(c(kl.1_kl * ((2 * par$p3 - 1) * a.sx_tx + kl.1_kl * sum(a*a)),
kr.1_kr * ((2 * par$p4 - 1) * b.sx_tx + kr.1_kr * sum(b*b)), sum(sx * sxsx_tx), n / R^2)) hessian[lower.tri(hessian)] <- 2*c(kl.1_kl * kr.1_kr * sum(a * b), kl.1_kl * sum(a * sx), kl.1_kl * sum(a) / R, kr.1_kr * sum(b * sx), kr.1_kr * sum(b) / R, sum(sxsx_tx) / R) hessian <- hessian + t(hessian) delta <- solve(hessian,gradient) theta <- c(log(par$p3/(1-par$p3)), log(par$p4/(1-par$p4)), log(R), par$p1)
theta <- theta - delta
par$p3 <- plogis(theta[1]) par$p4 <- plogis(theta[2])
par$p1 <- theta[4] par$p2 <- par$p1 + exp(theta[3]) if(all(abs(delta) < 1e-12) | iter == maxit) break } } else{ # } # theorical quantiles theoq <- do.call("qBMT", c(list(p = probs), as.list(par[stnames]), as.list(fix.arg))) # objective function value <- sum((sq - theoq)^2) if(iter == maxit){ conv <- 1 message <- "Maximum number of iterations" } # Restore to the given parameterization if(int.type.p.3.4 != 1 | int.type.p.1.2 != 1){ c.par <- BMTchangepars(par$p3,par$p4,par$type.p.3.4,par$p1,par$p2,par$type.p.1.2) if(int.type.p.3.4 != 1){ par$p3 <- c.par$p3 par$p4 <- c.par$p4 par$type.p.3.4 <- c.par$type.p.3.4 } if(int.type.p.1.2 != 1){ par$p1 <- c.par$p1 par$p2 <- c.par$p2 par$type.p.1.2 <- c.par$type.p.1.2 } } mqde <- list(estimate = unlist(par[stnames]), convergence = conv, value = value, hessian = NULL, probs = probs, dist = dist, optim.function = NULL, fix.arg = fix.arg, loglik = .loglik(par[stnames], fix.arg, data, "dBMT"), optim.method = "NR", fix.arg.fun = NULL, counts = c(iter, iter), optim.message = message) } else{ # mqdedist function mqde <- mqdedist(data, "BMT", probs = probs, qtype = qtype, dist = dist, start = start, fix.arg = fix.arg, optim.method = optim.method, lower = lower, upper = upper, custom.optim = custom.optim, weights = weights, silent = silent, ...) } } # Estimation with location-scale parametrization might allow data outside the estimated domain par <- append(mqde$estimate,fix.arg)
if (int.type.p.1.2 == 2)
par <- BMTchangepars(par$p3, par$p4, par$type.p.3.4, par$p1, par$p2, par$type.p.1.2)
n.obs <- sum(data < par$p1 | data > par$p2)
if(n.obs > 0){
text <- paste("The resultant estimated domain is [", round(par$p1, 4), ",", round(par$p2, 4),
"] and there are ", n.obs, " observations out of it.", sep="")
warning(text)
}
return(mqde)
}


## Try the BMT package in your browser

Any scripts or data that you put into this service are public.

BMT documentation built on May 2, 2019, 5:41 a.m.