Description Usage Arguments Details Value See Also Examples
View source: R/draw_latent_distribution.R
Plot the posterior mean of model parameter θ and and the latent function, i.e. the differential logarithmic Gaussian d \log Φ(z).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
StanS4class |
An S4 object of class To be passed to |
dark_theme |
TRUE or FALSE |
dig |
A variable to be passed to the function |
mesh |
Mesh for painting the area |
new.imaging.device |
Logical: |
hit.rate |
whether draws it. Default is |
false.alarm.rate |
whether draws it. Default is |
both.hit.and.false.rate |
whether draws it. Default is |
density |
A natural number, indicating the density of shading lines, in lines per inch. |
color |
A color region is selected from black and white only. For more colors, put |
mathmatical.symbols |
A logical, whether legend is in plot. |
type |
An integer, for the color of background and etc. |
summary |
Logical: |
Our FROC model use a latent Gaussian random variable to determine false rates which are defined as follows;
q_5(z_1,...z_C) = \int_{z5}^{∞} d \log Φ(z)dz
q_4(z_1,...z_C) = \int_{z4}^{z5} d \log Φ(z)dz
q_3(z_1,...z_C) = \int_{z3}^{z4} d \log Φ(z)dz
q_2(z_1,...z_C) = \int_{z2}^{z3} d \log Φ(z)dz
q_1(z_1,...z_C) = \int_{z1}^{z2} d \log Φ(z)dz
For example, in the following data, the number of false alarm data with confidence level 5 41 which is considered as an sample from the Poisson distribution of its rate
q_5(z_1,...z_C) = \int_{z5}^{∞} d \log Φ(z)dz
So, this Gaussian distribution determines false rate, and this function draw_latent_noise_distribution()
plot
this Gaussian distribution d \log Φ and
the density Gaussian(z|μ,σ) is also plotted to compare hit rates and false rates.
thus, the author implement it in the draw_latent_signal_distribution()
,
Example data:
A single reader and single modality case
——————————————————————————————————
NI=63,NL=124 | confidence level | No. of false alarms | No. of hits |
In R console -> | c | f | h |
----------------------- | ----------------------- | ----------------------------- | ------------- |
definitely present | 5 | 1 | 41 |
probably present | 4 | 2 | 22 |
equivocal | 3 | 5 | 14 |
subtle | 2 | 11 | 8 |
very subtle | 1 | 13 | 1 |
—————————————————————————————————
* false alarms = False Positives = FP
* hits = True Positives = TP
Information of Latent Gaussians, such as mean and S.D. of the signal distributions and thresholds.
draw_latent_signal_distribution()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ## Not run:
#========================================================================================
# Shape of signal distribution strongly influences the value of AUC, so in the following
# the author shows how it affects the estimates of AUCs.
# We consider two dataset, one of which is a low AUC and the other is a high AUC.
# In the high AUC case, the Signal Gaussain will be low variance and
# in the low AUC case, the variance will desperse. 2019 August 4, 2019 Dec 17
#========================================================================================
# ----- High AUC case --------
viewdata(dataList.High)
fit.High <- fit_Bayesian_FROC(dataList.High,ite=111)
draw_latent_signal_distribution(fit.High)
# ----- Low AUC case --------
viewdata(dataList.Low)
fit.Low <- fit_Bayesian_FROC(dataList.Low)
draw_latent_signal_distribution(fit.Low)
Close_all_graphic_devices() # 2020 August
## End(Not run)# dottest
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.