Description Usage Arguments Details Value Examples
View source: R/validation_MRMC_Create_dataList_MRMC_Hit_from_rate_etc.R
From threshold, mean and S.D., data of False Alarm are created.
1 2 3 4 5 6 7 | false_and_its_rate_creator(
z.truth = BayesianFROC::z_truth,
NI = 333,
NL = 111,
ModifiedPoisson = FALSE,
seed = 12345
)
|
z.truth |
Vector of dimension = C represents the thresholds of bi-normal assumption. |
NI |
The number of images. |
NL |
The number of lesions. |
ModifiedPoisson |
Logical, that is If Similarly, If For more details, see the author's paper in which I explained per image and per lesion. (for details of models, see vignettes , now, it is omiited from this package, because the size of vignettes are large.) If \frac{F_1+F_2+F_3+F_4+F_5}{N_L}, \frac{F_2+F_3+F_4+F_5}{N_L}, \frac{F_3+F_4+F_5}{N_L}, \frac{F_4+F_5}{N_L}, \frac{F_5}{N_L}, where N_L is a number of lesions (signal). To emphasize its denominator N_L, we also call it the False Positive Fraction (FPF) per lesion. On the other hand, if \frac{F_1+F_2+F_3+F_4+F_5}{N_I}, \frac{F_2+F_3+F_4+F_5}{N_I}, \frac{F_3+F_4+F_5}{N_I}, \frac{F_4+F_5}{N_I}, \frac{F_5}{N_I}, where N_I is the number of images (trial). To emphasize its denominator N_I, we also call it the False Positive Fraction (FPF) per image. The model is fitted so that
the estimated FROC curve can be ragraded
as the expected pairs of FPF per image and TPF per lesion ( or as the expected pairs of FPF per image and TPF per lesion ( If On the other hand, if So,data of FPF and TPF are changed thus, a fitted model is also changed whether Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28 |
seed |
The seed for creating a collection of the number of false alarms synthesized by the Poisson distributions using the specified seed. |
From threshold, mean and S.D. of the latent Gaussian noise distribution in the bi-normal assumption, data of False Alarm are created. For the process of this drawing false alarm samples, its rate are also created. So, in the return values of the function, the rates for each confidence level is also attached.
A list of vectors, indicating a true parameter and a sample.
A vector indicating a true parameter: False rate from thresholds.
A vector indicating a sample, more precisely,
The truth parameter of false alarm rate calculated by true thresholds z
and
also, one-time drawn samples of false alarms from the calculated false rates.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | ## Not run:
false.rate <- false_and_its_rate_creator()
#========================================================================================
# In SBC, Poisson rate = 0,..so,... i have to investigate.
#========================================================================================
set.seed( 1234 )
dz <-runif(3, # sample size
0.01, # lower bound
1 # upper bound
)
w <- rnorm(1,
0,
1
)
z <- z_from_dz(w,dz )
false_and_its_rate_creator(z )
#========================================================================================
# Poisson rate is OK
#========================================================================================
set.seed( 1234 )
dz <-runif(3, # sample size
0.01, # lower bound
1 # upper bound
)
w <- rnorm(1,
0,
10 # It cause the poisson rate become small
)
z <- z_from_dz(w,dz )
false_and_its_rate_creator(z )
#========================================================================================
# In SBC, Poisson rate is small
#========================================================================================
set.seed( 1234 )
dz <-runif(3, # sample size
0.01, # lower bound
1 # upper bound
)
w <- rnorm(1,
0,
10 # It cause the poisson rate become small
)
z <- z_from_dz(w,dz )
false_and_its_rate_creator(z )
#========================================================================================
# Poisson rate = 0
#========================================================================================
set.seed( 1234 )
dz <-runif(3, # sample size
0.01, # lower bound
10 # It cause the poisson rate become exactly 0 # upper bound
)
w <- rnorm(1,
0,
1
)
z <- z_from_dz(w,dz )
false_and_its_rate_creator(z )
#'
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.