Description Usage Arguments Value Examples
Make a factor vector by which we plot FPF and TPF.
1 2 3 4 5 6 7 | plot_FPF_TPF_via_dataframe_with_split_factor(
dataList.MRMC,
ModifiedPoisson = FALSE,
colored_by_modality = TRUE,
numbered_by_modality = TRUE,
cex = 1.3
)
|
dataList.MRMC |
A list, indicating FROC data of MRMC.
See also |
ModifiedPoisson |
Logical, that is If Similarly, If For more details, see the author's paper in which I explained per image and per lesion. (for details of models, see vignettes , now, it is omiited from this package, because the size of vignettes are large.) If \frac{F_1+F_2+F_3+F_4+F_5}{N_L}, \frac{F_2+F_3+F_4+F_5}{N_L}, \frac{F_3+F_4+F_5}{N_L}, \frac{F_4+F_5}{N_L}, \frac{F_5}{N_L}, where N_L is a number of lesions (signal). To emphasize its denominator N_L, we also call it the False Positive Fraction (FPF) per lesion. On the other hand, if \frac{F_1+F_2+F_3+F_4+F_5}{N_I}, \frac{F_2+F_3+F_4+F_5}{N_I}, \frac{F_3+F_4+F_5}{N_I}, \frac{F_4+F_5}{N_I}, \frac{F_5}{N_I}, where N_I is the number of images (trial). To emphasize its denominator N_I, we also call it the False Positive Fraction (FPF) per image. The model is fitted so that
the estimated FROC curve can be ragraded
as the expected pairs of FPF per image and TPF per lesion ( or as the expected pairs of FPF per image and TPF per lesion ( If On the other hand, if So,data of FPF and TPF are changed thus, a fitted model is also changed whether Revised 2019 Dec 8 Revised 2019 Nov 25 Revised 2019 August 28 |
colored_by_modality |
A logical, if TRUE, then the color in the scatter plot means modality ID. If not, then the each color in the scatter plot indicates reader ID. |
numbered_by_modality |
A logical, if TRUE, then the number in the scatter plot means modality ID. If not, then the each number in the scatter plot indicates reader ID. |
cex |
A positive real number, specifying the size of dots in the resulting plot. |
A dataframe, which is added TPF and FPF, etc into dataList.MRMC
.
Added Vectors as Contents of the Data-frame
CFP
A vector of Cumulative False Positive
CTP
A vector of Cumulative True Positive
TPF
A vector of True Positive Fraction
FPF
A vector of False Positive Fraction per image or per lesion according to the logical variable ModifiedPoisson
factor
What this means is trivial.
Vectors as Contents of the Data-frame dataList.MRMC
c
A vector of positive integers, representing the confidence level. This vector must be made by rep(rep(C:1), M*Q)
m
A vector of positive integers, representing the modality ID vector.
q
A vector of positive integers, representing the reader ID vector.
h
A vector of non-negative integers, representing the number of hits.
f
A vector of non-negative integers, representing the number of false alarm.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | #========================================================================================
# The 1st example
#========================================================================================
v <- v_truth_creator_for_many_readers_MRMC_data(M=1,Q=37)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=1,Q=37)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = TRUE,
numbered_by_modality = TRUE)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = FALSE,
numbered_by_modality = TRUE)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = TRUE,
numbered_by_modality = FALSE)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = FALSE,
numbered_by_modality = FALSE)
#========================================================================================
# The 2-nd example
#========================================================================================
#
v <- v_truth_creator_for_many_readers_MRMC_data(M=2,Q=37)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=2,Q=37)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = TRUE,
numbered_by_modality = TRUE)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = FALSE,
numbered_by_modality = TRUE)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = TRUE,
numbered_by_modality = FALSE)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = FALSE,
numbered_by_modality = FALSE)
#========================================================================================
# The 3rd example
#========================================================================================
v <- v_truth_creator_for_many_readers_MRMC_data(M=3,Q=7)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=3,Q=7)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = TRUE,
numbered_by_modality = TRUE)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = FALSE,
numbered_by_modality = TRUE)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = TRUE,
numbered_by_modality = FALSE)
plot_FPF_TPF_via_dataframe_with_split_factor(d,
colored_by_modality = FALSE,
numbered_by_modality = FALSE)
#========================================================================================
# The 4th example
#========================================================================================
plot_FPF_TPF_via_dataframe_with_split_factor( dataList.MRMC = dd,
colored_by_modality = TRUE,
numbered_by_modality = TRUE)
#========================================================================================
# The 5th example
#========================================================================================
## Not run:
a <- plot_FPF_TPF_via_dataframe_with_split_factor(dd)
p <- ggplot2::ggplot(a, ggplot2::aes(FPF, TPF,
group = factor(factor),
colour = factor(m)) ) +
ggplot2::geom_line(size = 1.4)
print(p)
#========================================================================================
# The 6th example
#========================================================================================
a <- plot_FPF_TPF_via_dataframe_with_split_factor(dd,cex = 1.8)
#========================================================================================
# The 7th example
#========================================================================================
# Plot empirical FROC curve whose modality is specified as following manner
a <- plot_FPF_TPF_via_dataframe_with_split_factor(dd)
aa <- a[a$m == c(2,3), ]
p <- ggplot2::ggplot(aa, ggplot2::aes(FPF, TPF,
group = factor(factor),
colour = factor(m)) ) +
ggplot2::geom_line(size = 1.4)
print(p)
# Plot empirical FROC curve whose modality is specified as following manner
a <- plot_FPF_TPF_via_dataframe_with_split_factor(dd)
aa <- a[a$m %in% c(4,3), ]
p <- ggplot2::ggplot(aa, ggplot2::aes(FPF, TPF,
group = factor(factor),
colour = factor(m)) ) +
ggplot2::geom_line(size = 1.4)
print(p)
# Plot empirical FROC curve whose modality is specified as following manner
a <- plot_FPF_TPF_via_dataframe_with_split_factor(dd)
aa <- a[a$m %in% c(3,4), ]
p <- ggplot2::ggplot(aa, ggplot2::aes(FPF, TPF,
group = factor(factor),
colour = factor(m)) ) +
ggplot2::geom_line(size = 1.4)
print(p)
# Close_all_graphic_devices()
## End(Not run)#dontrun
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.