Nothing
#' @title The Cumulative distribution function \eqn{\Phi(x)}
#' of the Standard Gaussian, namely, mean = 0 and variance =1.
#'
#' @description
#'
#' \deqn{\Phi(x):= \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} }
#'
#' @param x A real. To be passed to
#' the function \code{stats::pnorm()}
#' @return \eqn{\Phi(x) := \int _{-\infty}^x Gaussian(z|0,1)dz }
#' @seealso \code{\link{Phi_inv}()}
#' @export
#'
#' @examples
# ####1#### ####2#### ####3#### ####4#### ####5#### ####6#### ####7#### ####8#### ####9####
#'#========================================================================================
#'# 1) validation of this function
#'#========================================================================================
#'#'
#' x<-0.2
#' Phi(x)==stats::pnorm(x)
#'
#'
#'
# ####1#### ####2#### ####3#### ####4#### ####5#### ####6#### ####7#### ####8#### ####9####
#'#========================================================================================
#'# 1) Build the data
#'#========================================================================================
#'#'
#'
#' a <- 0.1;
#' NX <- 222;
#' x <- runif(100,-11,11)
#' y <- Phi_inv(exp(a/NX) *Phi(x))-x
#' plot(x,y)
#'
#' a <- 0.1;
#' NX <- 222;
#' x <- runif(100,0,11)
#' y <- Phi_inv(exp(a/NX) *Phi(x))-x
#' plot(x,y)
#'
#'
#' a <- 0.1;
#' NX <- 222;
#' x <- runif(100,2,4)
#' y <- Phi_inv(exp(a/NX) *Phi(x))-x
#' plot(x,y)
#'
#' a <- 0.01;
#' NX <- 222;
#' x <- runif(100,2,4);
#' y <- Phi_inv(exp(a/NX) *Phi(x))-x
#' plot(x,y)
#'
#'
#'
#'
#' a <- 0.01;
#' NX <- 222;
#' x <- runif(100,3.5,4);
#' y <- Phi_inv(exp(a/NX) *Phi(x))-x
#' plot(x,y)
#'
#'
Phi <- function(x) {
y<- stats::pnorm(q=x)
return(y)
}
# @describeIn Phi
# @rdname Phi
#' @title Inverse function of the Cumulative distribution
#' function \eqn{\Phi(x)} of the Standard Gaussian.
#' where \eqn{x} is a real number.
#' @description
#' The author is confused \code{stats::qnorm()}
#' with \code{stats::pnorm()} and thus he made this.
#'
#' @param x A real. To be passed
#' to the function \code{stats::qnorm()}
#' @seealso \code{\link{Phi}()}, \code{\link{inv_Phi}()}
#' @return A real number: \eqn{\Phi^{-1}(x)}
#' @export
#' @details In Stan file, it is \code{inv_Phi()}
#' and not \code{inv_phi}.
#'
#' Since \eqn{\Phi(x)} is monotonic, it follows that
#' \eqn{\frac{d}{dx}\Phi^{-1} = (\frac{d}{dx}\Phi)^{-1} >0},
#' and thus \eqn{\Phi^{-1}(x)} is also monotonic.
#' @examples
#'
#'
#'
#'
#' x <- runif(100)
#'
#' Phi_inv(x) == stats::qnorm(x)
#'
#' inv_Phi(x) == stats::qnorm(x)
#'
#'
#'
#'
#'
#'
Phi_inv <- function(x) {
y<- stats::qnorm(x)
return(y)
}
# @describeIn Phi
# @rdname Phi
#' @title Inverse function of the Cumulative distribution
#' function \eqn{\Phi(x)} of the Standard Gaussian.
#' where \eqn{x} is a real number.
#' @description
#' The author is confused \code{stats::qnorm()}
#' with \code{stats::pnorm()} and thus he made this.
#'
#' @param x A real. To be passed
#' to the function \code{stats::qnorm()}
#' @seealso \code{\link{Phi}()}, \code{\link{Phi_inv}()}
#' @return A real number: \eqn{\Phi^{-1}(x)}
#' @export
#' @details In Stan file, it is \code{inv_Phi()}
#' and not \code{inv_phi}.
#'
#' Since \eqn{\Phi(x)} is monotonic, it follows that
#' \eqn{\frac{d}{dx}\Phi^{-1} = (\frac{d}{dx}\Phi)^{-1} >0},
#' and thus \eqn{\Phi^{-1}(x)} is also monotonic.
#' @examples
#'
#'
#'
#'
#' x <- runif(100)
#'
#' Phi_inv(x) == stats::qnorm(x)
#'
#' inv_Phi(x) == stats::qnorm(x)
#'
#'
#'
#'
#'
inv_Phi <- function(x) {
y<- stats::qnorm(x)
return(y)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.