Nothing
#' @title Research for Prior
#' @description The autor investigates prior
#'
#' @param m a real number, specifying the mean of signal Gaussian
#' @param sd a real number, specifying the standard deviation of signal Gaussian
#' @param z a real number, indicating \eqn{\theta_c}.
#' @param e a positive real number, indicating \eqn{\epsilon}.
#'
#' @return A real, to investigate prior
#'
#' \deqn{ \mu + \sigma \Phi^{-1}(1- \epsilon + \Phi( \frac{\theta_{c} - \mu }{\sigma} ) ) - \Phi^{-1}( \Phi( \theta) \exp(\epsilon )) }
#'
#' where,
#' \code{m = } \eqn{\mu},
#' \code{sd = } \eqn{\sigma},
#' \code{z = } \eqn{\theta},
#' \code{e = } \eqn{\epsilon}.
#'
#' @export
#'
#' @examples
# ####1#### ####2#### ####3#### ####4#### ####5#### ####6#### ####7#### ####8#### ####9####
#'#========================================================================================
#'# From this plot, we can evaluate the minimum value of x such that
#'# the value is negative.
#'#========================================================================================
#'
#'
#' x <- runif(100,-1,3 ) # Syntheisze 100 smaples from Uniform(-1,3)
#' y <- priorResearch(x)
#'
#' plot(x,y)
#'
#'
#'
#'
priorResearch <- function(z,m=6,sd=1,e =0.01) {
message("m + sd*Phi_inv(e) = ",m + sd*Phi_inv(e) )
if (0==sum(z < m + sd*Phi_inv(e)) )return (message( "z should be smaller than ",m + sd*Phi_inv(e) ))
message("1-e +Phi( (z-m)/sd ) = ",1-e +Phi( (z-m)/sd ) )
message(" m+sd*Phi_inv(1-e +Phi( (z-m)/sd )) -Phi_inv(Phi(z)*exp(e)) = ", m+sd*Phi_inv(1-e +Phi( (z-m)/sd )) -Phi_inv(Phi(z)*exp(e)) )
y <- m+sd*Phi_inv(1-e +Phi( (z-m)/sd )) -Phi_inv(Phi(z)*exp(e))
invisible(y)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.