Nothing
#' @title Summarize the estimates for MRMC case
#'
#'@inheritParams DrawCurves
#'@inheritParams fit_Bayesian_FROC
#' @return Nothing
#' @export
#'
#' @examples
#' \dontrun{
#' fit <- fit_Bayesian_FROC(
#' dataList.Chakra.Web.orderd,
#' ite = 1111,
#' summary =FALSE
#' )
#'
#' summarize_MRMC(fit)
#'
#'
#'}# dottest
summarize_MRMC <- function(
StanS4class,dig=3
){
fit <- methods::as(StanS4class,"stanfit")
e <- extract(fit)
M <- StanS4class@dataList$M
Prob <- vector()
Diff <- vector()
name <- vector()
name.first.modality <- vector()
name.second.modality <- vector()
s<-0
for (md in 1:M) {
for (mmd in md:M) {
if (!md==mmd) {
s<- s+1
Prob[s] <- mean( e$A[,md] > e$A[,mmd] )
Diff[s] <- mean( e$A[,md] - e$A[,mmd] )
name[s] <- paste( "Probablity of the event that the AUC of the ", md,"-th Modality is greater than that of the", mmd, "-th modality.")
name.first.modality[s] <- paste(md)
name.second.modality[s] <- paste(mmd)
}#if md==mmd
} }
message("\n\n\n ---- Summarizing Tables ----")
message(crayon::silver("\n* Probablity of the event that the AUC of the first column Modality is greater than that of the second column modality."))
message(crayon::silver("\n* For example, the first row in the first table implies that Probablity of the event that the AUC of the first Modality is greater than that of the second modality is equal to ", Prob[1], " with the posterior mean of the difference of the AUC of the first column minus that of second column is", Diff[1],".\n"))
print(knitr::kable(
data.frame(first.modality=name.first.modality,
second.modality=name.second.modality,
Prob=Prob,
Diff=Diff),format = "pandoc",digits = dig
)
)
print(knitr::kable(
data.frame(first.modality=name.second.modality,
second.modality=name.first.modality,
Prob=1-Prob,
Diff=-Diff),format = "pandoc",digits = dig
)
)
message("\n* Chi square goodness of fit statistic (posterior mean): ",mean(Chi_square_goodness_of_fit_in_case_of_MRMC_Posterior_Mean(StanS4class,summary=FALSE)$chi.square) )
names(Prob) <- name
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.