# inst/examples/SMCHelp.R In BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics

```## Example for the use of SMC
# First we need a bayesianSetup - SMC makes most sense if we can  for demonstration,
# we'll write a function that puts out the number of model calls

MultiNomialNoCor <- generateTestDensityMultiNormal(sigma = "no correlation")

parallelLL <- function(parMatrix){
print(paste("Calling likelihood with", nrow(parMatrix), "parameter combinations"))
out = apply(parMatrix, 1, MultiNomialNoCor)
return(out)
}

bayesianSetup <- createBayesianSetup(likelihood = parallelLL, lower = rep(-10, 3),
upper = rep(10, 3), parallel = "external")

# Defining settings for the sampler
# First we use the sampler for rejection sampling
settings <- list(initialParticles = 1000, iterations = 1, resampling = FALSE)

# Running the sampler
out1 <- runMCMC(bayesianSetup = bayesianSetup, sampler = "SMC", settings = settings)
#plot(out1)

# Now for sequential Monte Carlo
settings <- list(initialParticles = 100, iterations = 5, resamplingSteps = 1)
out2 <- runMCMC(bayesianSetup = bayesianSetup, sampler = "SMC", settings = settings)
#plot(out2)

\dontrun{

## Example for starting a new SMC run with results from a previous SMC run

# Generate example data (time series)
# x1 and x2 are predictory, yObs is the response
t <- seq(1, 365)
x1 <- (sin( 1 / 160 * 2 * pi * t) + pi) * 5
x2 <- cos( 1 / 182.5 * 1.25 * pi * t) * 12

# the model
mod <- function(par, t1 = 1, tn = 365) {
par * x1[t1:tn] + par * x2[t1:tn]
}

# the true parameters
par1 <- 1.65
par2 <- 0.75
yObs <- mod(c(par1, par2)) + rnorm(length(x1), 0, 2)

# split the time series in half
plot(yObs ~ t)
abline(v = 182, col = "red", lty = 2)

# First half of the data
ll_1 <- function(x, sum = TRUE) {
out <- dnorm(mod(x, 1, 182) - yObs[1:182], 0, 2, log = TRUE)
if (sum == TRUE) sum(out) else out
}

# Fit the first half of the time series
# (e.g. fit the model to the data soon as you collect the data)
setup_1 <- createBayesianSetup(ll_1, lower = c(-10, -10), upper = c(10, 10))
settings_1 <- list(initialParticles = 1000)
out_1 <- runMCMC(setup_1, "SMC", settings_1)
summary(out_1)

# Second half of the data
ll_2 <- function(x, sum = TRUE) {
out <- dnorm(mod(x, 183, 365) - yObs[183:365], 0, 2, log = TRUE)
if (sum == TRUE) sum(out) else out
}

# Fit the second half of the time series
# (e.g. fit the model to the data soon as you collect the data)
setup_2 <- createBayesianSetup(ll_2, lower = c(-10, -10), upper = c(10, 10))

# This is the important step, we use the final particles from the
# previous SMC run to initialize the new SMC run
settings_2 <- list(initialParticles = out_1\$particles)
out_2 <- runMCMC(setup_2, "SMC", settings_2)
summary(out_2)

par_pred <- apply(out_2\$particles, 2, median)
pred <- mod(par_pred)
plotTimeSeries(yObs, pred)

}
```

## Try the BayesianTools package in your browser

Any scripts or data that you put into this service are public.

BayesianTools documentation built on Dec. 10, 2019, 1:08 a.m.