R/check.input.R

Defines functions check.input

## File Name: check.input.R
## File Version: 1.14
################################################################################
# check consistency of input to din-method (data, q.matrix, ...)               #
################################################################################

check.input <- function( data, q.matrix, conv.crit=0.001, maxit=100,
                    constraint.guess=NULL, constraint.slip=NULL,
                    guess.init=rep(.2, ncol(data) ), slip.init=guess.init,
                    weights=rep( 1, nrow( data ) ),  rule="DINA",
                    progress=TRUE ){

# Call: from din()
# Input: cf. din()
# Output: if possible cleaned arguments
#      else a warning message which leads to the termination of the procedure.

################################################################################
# check consistency of data object                                             #
################################################################################

    # check for data classes matrix and data.frame
    if ((data.class(data) !="matrix") & (data.class(data) !="data.frame"))
           return(warning("data must be matrix or data frame"))
    data <- as.matrix(data)

    # check for data entries being dichotomous or missing
    gt <- data[ is.na( data )==F ]
    # gt <- data[ ! is.na( data) ]

#    if(any(gt==9||gt==99||gt==.99)){
    if( sum(gt==9 ) + sum(gt==99 ) + sum(gt==.99) > 0 ){
      return(warning("Recode your data! Only responses with values 0 or 1 (or NA) are valid.",
      "\nMaybe missing values coded as 9, 99, .99.\n"))
      }

  # return all response pattern not containing NA
    gt <- unique( gt[ gt %in% c(0,1)==F ] )
    if(length(gt) > 0){
        return(warning("Recode your data! Only responses with values 0 or 1 (or NA) are valid.\n"))
                    }

    # check for provision of row- and colnames
    if(is.null(rownames(data))) rownames(data) <- 1:nrow(data)
    if(is.null(colnames(data))) colnames(data) <- paste("Item",1:ncol(data),sep="")

################################################################################
# check consistency of q.matrix object                                         #
################################################################################

    # check for data classes matrix and data.frame
    if ((data.class(q.matrix) !="matrix") & (data.class(q.matrix) !="data.frame"))
           return(warning("data must be matrix or data frame"))
    att.lbl <- attributes(q.matrix)$skill.labels
  q.matrix <- as.matrix(q.matrix)


    # return all response pattern not containing NA
    # gt_q <- data[ is.na( q.matrix )==F ]
    gt_q <- q.matrix[ ! is.na( q.matrix ) ]

    # gt_q <- unique( gt_q[ gt_q %in% c(0,1)==F ] )
    gt_q <- setdiff( unique( gt_q ), c(0,1) )
    if(length(gt) > 0){ return(warning("Check your Q-matrix! Only values 0 or 1 are valid.\n")) }

     # check if q.matrix obtains same number of items as the data set
    if(nrow(q.matrix)!=ncol(data)){ return(warning("Check your Q-matrix! Number of assigned items (rows)
          must fit the number of items in the data (columns).\n")) }

    # return warning message if there is a Zero-Row in the q.matrix
    rq <- rowSums(q.matrix)
    if (min(rq)==0){
        return(warning("Check your Q-matrix! The following items are not related to attributes:"
              , "\n", "Items ", paste( (1:(nrow(q.matrix)))[ rq==0], collapse=", " ), "\n" ))}

    # check for provision of row- and colnames
    if(is.null(rownames(q.matrix))) rownames(q.matrix) <- paste("Item",1:nrow(q.matrix),sep="")
    if(is.null(colnames(q.matrix))) colnames(q.matrix) <- paste("Skill",1:ncol(q.matrix),sep="")

  # check for provision of skill labels
  if(is.null(att.lbl)) attr(q.matrix, "skill.labels") <- colnames(q.matrix)
  if(length(att.lbl) !=ncol(q.matrix) & length(att.lbl) !=0){
    attr(q.matrix, "skill.labels") <- colnames(q.matrix)
    warning("Unreasonable number of skill labels; skill labels replaced by colnames of q.matrix")
  }else{
    attr(q.matrix, "skill.labels") <- att.lbl
  }

################################################################################
# check consistency of arguments for parameter estimation routine              #
################################################################################

if(!is.numeric(conv.crit)|!is.numeric(maxit)) return(warning("Check your routine criteria"))
if(conv.crit<=0|maxit<1) return(warning("Check your routine criteria"))



################################################################################
# check consistency of constraint arguments for parameter boundaries           #
################################################################################

    # slip constraints see help files
    if(!is.null(constraint.slip)){                                                  #NULL permitted

      if (any(is.na(constraint.slip))|any(!is.numeric(constraint.slip))|         #numeric values only
        (!is.vector(constraint.slip) & (data.class(constraint.slip) !="matrix") &
        (data.class(constraint.slip) !="data.frame"))|                            #object typ
        (length(constraint.slip %% 2 !=0) & ncol(constraint.slip)!=2)){                #two columns!
           return(warning("check your error parameter constraints. See Help-files."))
        }
        if(is.vector(constraint.slip))
#          try(constraint.slip <- matrix(constraint.slip, ncol=2, byrow=T))
        if(data.class(constraint.slip)=="data.frame"){
            onstraint.slip <- as.matrix(constraint.slip) }

        if(any(duplicated(constraint.slip[,1]))|                                   #no duplicates
        any(!constraint.slip[,1]%in%1:ncol(data))|                                    #first column may only be indicees
        all(!(constraint.slip[,2]>=0 & constraint.slip[,2]<=1))){                  #all entries between 0 and 1
           return(warning("check your error parameter constraints. See Help-files."))
        }
    }

    # guessing constraints see help files
    if(!is.null(constraint.guess)){                                                 #NULL permitted
      if(any(is.na(constraint.guess))|any(!is.numeric(constraint.guess))|         #numeric values only
        (!is.vector(constraint.guess) & (data.class(constraint.guess) !="matrix")
        & (data.class(constraint.guess) !="data.frame"))|                          #object typ
        (length(constraint.guess)%%2!=0 & ncol(constraint.guess)!=2)){                #two columns!
           return(warning("check your error parameter constraints. See Help-files."))
        }
#        if(is.vector(constraint.guess))
#          try(constraint.guess <- matrix(constraint.guess, ncol=2, byrow=T))
        if(data.class(constraint.guess)=="data.frame"){
            constraint.guess <- as.matrix(constraint.guess)
                                    }

        if(any(duplicated(constraint.guess[,1])) |                                 #no duplicates
        any(!constraint.guess[,1] %in% 1:ncol(data))|                                   #first column may only be indicees
        all(!(constraint.guess[,2]>=0&constraint.guess[,2]<=1))){                  #all entries between 0 and 1
           return(warning("check your error parameter constraints. See Help-files."))
        }
    }

################################################################################
# check consistency of init arguments                                           #
################################################################################

    # slipping initialization see help files
#    try({slip.init <- as.vector(slip.init)
#         guess.init <- as.vector(guess.init)}, silent=T)
    if(!is.null(slip.init)){
    if(any(is.na(slip.init))|
      !all(is.numeric(slip.init))|
      !all(slip.init>=0&slip.init<=1)|
      (length(slip.init)!=ncol(data)))
     return(warning("Check your initial error parameter values. See Help-files."))
    }

    # guessing initialization see help files
    if(!is.null(guess.init)){
    if(any(is.na(guess.init))|
      !all(is.numeric(guess.init))|
      !all(guess.init>=0&guess.init<=1)|
      (length(guess.init)!=ncol(data)))
     return(warning("Check your initial error parameter values. See Help-files."))
    }


################################################################################
# check consistency of weight argument                                         #
################################################################################

    # weight see help files
#    try(weights <- as.vector(weights), silent=T)
    if(any(is.na(weights)) | is.null(weights) | !all(is.numeric(weights)) |
      !all(weights>0)| (length(weights)!=nrow(data)))
     return(warning("Check your specificated weights of the response patterns. See Help-files."))

################################################################################
# check consistency of rule argument                                           #
################################################################################

    # rule specification see help files
    if(length(rule)!=1 & length(rule)!=ncol(data)){
        return(warning("Check the condensation rule for parameter estimation. The character string has
        to be of length 1 or of length ncol(data)."))
    }
#    try(if(!all(unique(rule)%in%c("DINA", "DINO")))
    if(!all(unique(rule)%in%c("DINA", "DINO"))){
        return(warning("Check the condensation rule for parameter estimation. Only \"DINA\" and \"DINO\" possible.")) }

################################################################################
# check consistency of progress argument                                       #
################################################################################

    # progress see help files
    if(!(is.logical(progress))){
        return(warning("Check specification whether or not the estimation progress should be printed."))
                    }

    return(list("data"=data, "q.matrix"=q.matrix,
      "conv.crit"=conv.crit, "maxit"=maxit, "constraint.guess"=constraint.guess,
      "constraint.slip"=constraint.slip, "guess.init"=guess.init,
      "slip.init"=slip.init, "weights"=weights, "rule"=rule, "progress"=progress))
}

Try the CDM package in your browser

Any scripts or data that you put into this service are public.

CDM documentation built on Aug. 25, 2022, 5:08 p.m.