R/ols.compreg.R

Defines functions ols.compreg

Documented in ols.compreg

################################
#### OLS regression for compositional data
#### Tsagris Michail 10/2014
#### mtsagris@yahoo.gr
################################
ols.compreg <- function(y, x, con = TRUE, B = 1, ncores = 1, xnew = NULL) {

  olsreg <- function(para, y, x, d) {
    be <- matrix(para, ncol = d)
    mu1 <- cbind(1, exp(x %*% be))
    mu <- mu1 / rowSums(mu1)
    as.vector(y - mu)
  }

  x <- model.matrix(y ~ ., data.frame(x) )
  if ( !con )  x <- x[, -1, drop = FALSE]
  p <- dim(x)[2]
  n <- dim(y)[1]  ## sample size
  d <- dim(y)[2] - 1  ## dimensionality of the simplex
  namx <- colnames(x)
  namy <- colnames(y)
  if ( is.null( namy ) )  {
    namy <- paste("Y", 2:(d + 1), sep = "")
  } else namy <- namy[-1]

  runtime <- proc.time()
  ini <- as.vector( t( Compositional::kl.compreg(y, x[, -1], con = con)$be ) ) ## initial values
  mod <- minpack.lm::nls.lm(par = ini, fn = olsreg, y = y, x = x, d = d, control = list(maxiter = 5000))
  be <- matrix(mod$par, ncol = d)
  runtime <- proc.time() - runtime
  covbe <- solve(mod$hessian)

  if (B > 1) {
    nc <- ncores
    if (nc <= 1) {
      runtime <- proc.time()
      betaboot <- matrix( nrow = B, ncol = length(ini) )
      for (i in 1:B) {
        ida <- Rfast2::Sample.int(n, n, replace = TRUE)
        yb <- y[ida, ]
        xb <- x[ida, ]
        ini <- as.vector( t( Compositional::kl.compreg(yb, xb[, -1], con = con)$be ) )  ## initial values
        qa <- nlm(olsreg, ini, y = yb, x = xb, d = d)
        qa <- nlm(olsreg, qa$estimate, y = yb, x = xb, d = d)
        qa <- nlm(olsreg, qa$estimate, y = yb, x = xb, d = d)
        betaboot[i, ] <- qa$estimate
      }  ##  end  for (i in 1:B) {
      covbe <- cov(betaboot)
      runtime <- proc.time() - runtime

    } else {
      runtime <- proc.time()
      requireNamespace("doParallel", quietly = TRUE, warn.conflicts = FALSE)
      betaboot <- matrix(nrow = B, ncol = length(ini) )
      cl <- parallel::makePSOCKcluster(ncores)
      doParallel::registerDoParallel(cl)
      betaboot <- foreach::foreach( i = 1:B, .combine = rbind, .packages = "Rfast2",
                                    .export = c( "Sample.int", "olsreg" ) ) %dopar% {
                                      ida <- Rfast2::Sample.int(n, n, replace = TRUE)
                                      yb <- y[ida, ]
                                      xb <- x[ida, ]
                                      suppressWarnings({
                                        ini <- as.vector( t( Compositional::kl.compreg(yb, xb[, -1], con = con)$be ) )  ## initial values
                                        qa <- nlm(olsreg, ini, y = yb, x = xb, d = d)
                                        qa <- nlm(olsreg, qa$estimate, y = yb, x = xb, d = d)
                                        qa <- nlm(olsreg, qa$estimate, y = yb, x = xb, d = d)
                                      })
                                      betaboot[i, ] <- qa$estimate
                                    }  ##  end foreach
      parallel::stopCluster(cl)
      covbe <- cov(betaboot)
      runtime <- proc.time() - runtime
    }  ## end if (nc <= 1) {

  }  ## end if (B > 1) {

  nam <- NULL
  for (i in 1:p)  nam <- c(nam, paste(namy, ":", namx[i], sep = "") )
  colnames(covbe) <- rownames(covbe) <- nam

  est <- NULL
  if ( !is.null(xnew) ) {
    xnew <- model.matrix(~., data.frame(xnew) )
    if ( !con )  xnew <- xnew[, -1, drop = FALSE]
    mu <- cbind( 1, exp(xnew %*% beta) )
    est <- mu / Rfast::rowsums(mu)
    colnames(est) <- colnames(y)
  }

  colnames(be) <- namy
  rownames(be) <- namx
  list(runtime = runtime, be = be, covbe = covbe, est = est)
}


# ols.compreg <- function(y, x, con = TRUE, B = 1, ncores = 1, xnew = NULL) {
#   ## y is dependent variable, the compositional data
#   ## x is the independent variable(s)
#   ## B is the number of bootstrap samples used to obtain
#   ## standard errors for the bes
#   ## if B==1 no bootstrap is performed and no standard errors are reported
#   ## if ncores=1, then 1 processor is used, otherwise
#   ## more are used (parallel computing)
#   olsreg <- function(para, y, x, d) {
#     be <- matrix(para, byrow = TRUE, ncol = d)
#     mu1 <- cbind(1, exp(x %*% be))
#     mu <- mu1 / rowSums(mu1)
#     - 2 * sum( y * mu ) + sum( mu^2 )
#   }
#
#   runtime <- proc.time()
#   x <- model.matrix(y ~ ., data.frame(x) )
#   if ( !con )  x <- x[, -1, drop = FALSE]
#   p <- dim(x)[2]
#   n <- dim(y)[1]  ## sample size
#   d <- dim(y)[2] - 1  ## dimensionality of the simplex
#   namx <- colnames(x)
#   namy <- colnames(y)
#   if ( is.null( namy ) )  {
#     namy <- paste("Y", 2:(d + 1), sep = "")
#   } else namy <- namy[-1]
#
#   ## the next lines minimize the reg function and obtain the estimated betas
#   ini <- as.vector( t( Compositional::kl.compreg(y, x[, -1], con = con)$be ) ) ## initial values
#   suppressWarnings({
#     qa <- nlm(olsreg, ini, y = y, x = x, d = d)
#     qa <- nlm(olsreg, qa$estimate, y = y, x = x, d = d)
#     qa <- nlm(olsreg, qa$estimate, y = y, x = x, d = d)
#   })
#   be <- matrix(qa$estimate, byrow = TRUE, ncol = d)
#   covb <- NULL
#   runtime <- proc.time() - runtime
#
#   if (B > 1) {
#     nc <- ncores
#     if (nc <= 1) {
#       runtime <- proc.time()
#       betaboot <- matrix( nrow = B, ncol = length(ini) )
#       for (i in 1:B) {
#         ida <- Rfast2::Sample.int(n, n, replace = TRUE)
#         yb <- y[ida, ]
#         xb <- x[ida, ]
#         ini <- as.vector( t( Compositional::kl.compreg(yb, xb[, -1], con = con)$be ) )  ## initial values
#         qa <- nlm(olsreg, ini, y = yb, x = xb, d = d)
#         qa <- nlm(olsreg, qa$estimate, y = yb, x = xb, d = d)
#         qa <- nlm(olsreg, qa$estimate, y = yb, x = xb, d = d)
#         betaboot[i, ] <- qa$estimate
#       }  ##  end  for (i in 1:B) {
#       covb <- cov(betaboot)
#       runtime <- proc.time() - runtime
#
#     } else {
#       runtime <- proc.time()
#       requireNamespace("doParallel", quietly = TRUE, warn.conflicts = FALSE)
#       betaboot <- matrix(nrow = B, ncol = length(ini) )
#       cl <- parallel::makePSOCKcluster(ncores)
#       doParallel::registerDoParallel(cl)
#       betaboot <- foreach::foreach( i = 1:B, .combine = rbind, .packages = "Rfast2",
#                       .export = c( "Sample.int", "olsreg" ) ) %dopar% {
#         ida <- Rfast2::Sample.int(n, n, replace = TRUE)
#         yb <- y[ida, ]
#         xb <- x[ida, ]
#         suppressWarnings({
#           ini <- as.vector( t( Compositional::kl.compreg(yb, xb[, -1], con = con)$be ) )  ## initial values
#           qa <- nlm(olsreg, ini, y = yb, x = xb, d = d)
#           qa <- nlm(olsreg, qa$estimate, y = yb, x = xb, d = d)
#           qa <- nlm(olsreg, qa$estimate, y = yb, x = xb, d = d)
#         })
#         betaboot[i, ] <- qa$estimate
#       }  ##  end foreach
#       parallel::stopCluster(cl)
#       covb <- cov(betaboot)
#       runtime <- proc.time() - runtime
#     }  ## end if (nc <= 1) {
#
#     nam <- NULL
#     for (i in 1:p)  nam <- c(nam, paste(namy, ":", namx[i], sep = "") )
#     colnames(covb) <- rownames(covb) <- nam
#   }  ## end if (B > 1) {
#
#   est <- NULL
#   if ( !is.null(xnew) ) {
#     xnew <- model.matrix(~., data.frame(xnew) )
#     if ( !con )  xnew <- xnew[, -1, drop = FALSE]
#     mu <- cbind( 1, exp(xnew %*% beta) )
#     est <- mu / Rfast::rowsums(mu)
#     colnames(est) <- colnames(y)
#   }
#
#   colnames(be) <- namy
#   rownames(be) <- namx
#   list(runtime = runtime, be = be, covbe = covb, est = est)
# }

Try the Compositional package in your browser

Any scripts or data that you put into this service are public.

Compositional documentation built on Oct. 9, 2024, 5:10 p.m.