Nothing
################################
#### Univariate ridge regression
#### Plot to see how things go
#### Tsagris Michail 8/2015
#### mtsagris@yahoo.gr
################################
ridge.plot <- function(y, x, lambda = seq(0, 5, by = 0.1) ) {
## if y is a vector only
## x contains the independent, continuous only, variables
## lambda contains a grid of values of the ridge regularization parameter
if ( all( y > 0 & y < 1 ) ) y <- log(y / ( 1 - y) ) ## logistic normal
n <- length(y) ## sample size
p <- dim(x)[2] ## dimensionality of x
R <- length(lambda)
be <- matrix(nrow = p, ncol = R)
yy <- y - sum(y) / n ## center the dependent variables
xx <- Rfast::standardise(x) ## standardize the independent variables
sa <- svd(xx)
d <- sa$d ; v <- t(sa$v) ; tu <- t(sa$u)
d2 <- d^2 ; A <- d * tu %*% yy
for (i in 1:R) be[, i] <- crossprod( v / ( d2 + lambda[i] ), A )
plot(lambda, be[1,], type = "l", col = 1, lty = 2,
ylim = c( min(be), max(be) ), xlab = expression(paste(lambda, " values") ),
ylab = "Beta coefficients", cex.lab = 1.2, cex.axis = 1.2, lwd = 2)
abline(v = lambda, col = "lightgrey", lty = 2)
abline(h = seq(min(be), max(be), length = 10), col = "lightgrey", lty = 2)
for (i in 2:p) lines(lambda, be[i, ], col = i, lty = 2, lwd = 2)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.