Nothing
#### ### ##
# METHODS #
#### ### ##
#' coxEN
#' @description This function performs a cox elastic net model (based on glmnet R package).
#' The function returns a Coxmos model with the attribute model as "coxEN".
#'
#' @details
#' The coxEN function is designed to handle survival data using the elastic net regularization. The
#' function is particularly useful when dealing with high-dimensional datasets where the number of
#' predictors exceeds the number of observations.
#' The elastic net regularization combines the strengths of both lasso and ridge regression. The
#' `EN.alpha` parameter controls the balance between lasso and ridge penalties.
#' It's important to note that when using the ridge penalty (`EN.alpha = 0`), the EVP and
#' `max.variables` parameters will not be considered.
#'
#' @param X Numeric matrix or data.frame. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and
#' event observations.
#' @param EN.alpha Numeric. Elastic net mixing parameter. If EN.alpha = 1 is the lasso penalty, and
#' EN.alpha = 0 the ridge penalty (default: 0.5). NOTE: When ridge penalty is used, EVP and
#' max.variables will not be used.
#' @param max.variables Numeric. Maximum number of variables you want to keep in the cox model. If
#' NULL, the number of columns of X matrix is selected. When MIN_EPV is not meet, the value will be
#' change automatically (default: NULL).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero variance
#' filtering (default: NULL).
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#'
#' @return Instance of class "Coxmos" and model "coxEN". The class contains the following elements:
#' \code{X}: List of normalized X data information.
#' \itemize{
#' \item \code{(data)}: normalized X matrix
#' \item \code{(x.mean)}: mean values for X matrix
#' \item \code{(x.sd)}: standard deviation for X matrix
#' }
#' \code{Y}: List of normalized Y data information.
#' \itemize{
#' \item \code{(data)}: normalized X matrix
#' \item \code{(y.mean)}: mean values for Y matrix
#' \item \code{(y.sd)}: standard deviation for Y matrix'
#' }
#' \code{survival_model}: List of survival model information.
#' \itemize{
#' \item \code{fit}: coxph object.
#' \item \code{AIC}: AIC of cox model.
#' \item \code{BIC}: BIC of cox model.
#' \item \code{lp}: linear predictors for train data.
#' \item \code{coef}: Coefficients for cox model.
#' \item \code{YChapeau}: Y Chapeau residuals.
#' \item \code{Yresidus}: Y residuals.
#' }
#'
#' \code{opt.lambda}: Optimal lambda computed by the model with maximum % Var from glmnet function.
#'
#' \code{EN.alpha}: EN.alpha selected
#'
#' \code{n.var}: Number of variables selected
#'
#' \code{call}: call function
#'
#' \code{X_input}: X input matrix
#'
#' \code{Y_input}: Y input matrix
#'
#' \code{convergence_issue}: If any convergence issue has been found.
#'
#' \code{alpha}: alpha value selected
#'
#' \code{selected_variables_cox}: Variables selected to enter the cox model.
#'
#' \code{nsv}: Variables removed by cox alpha cutoff.
#'
#' \code{removed_variables_correlation}: Variables removed by being high correlated with other
#' variables.
#'
#' \code{nzv}: Variables removed by remove_near_zero_variance or remove_zero_variance.
#'
#' \code{nz_coeffvar}: Variables removed by coefficient variation near zero.
#'
#' \code{class}: Model class.
#'
#' \code{time}: time consumed for running the cox analysis.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @references
#' \insertRef{Simon_2011}{Coxmos}
#'
#' @export
#'
#' @examples
#' data("X_proteomic")
#' data("Y_proteomic")
#' X <- X_proteomic[,1:50]
#' Y <- Y_proteomic
#' coxEN(X, Y, EN.alpha = 0.75, x.center = TRUE, x.scale = TRUE, remove_non_significant = TRUE)
coxEN <- function(X, Y,
EN.alpha = 0.5, max.variables = NULL,
x.center = TRUE, x.scale = FALSE,
remove_near_zero_variance = TRUE, remove_zero_variance = FALSE, toKeep.zv = NULL,
remove_non_significant = FALSE, alpha = 0.05,
MIN_EPV = 5, returnData = TRUE, verbose = FALSE){
t1 <- Sys.time()
y.center = y.scale = FALSE
FREQ_CUT <- 95/5
#### Check values classes and ranges
params_with_limits <- list("alpha" = alpha, "EN.alpha" = EN.alpha)
check_min0_max1_variables(params_with_limits)
numeric_params <- list("MIN_EPV" = MIN_EPV)
if(!is.null(max.variables)){
numeric_params$max.variables <- max.variables
}
check_class(numeric_params, class = "numeric")
logical_params <- list("x.center" = x.center, "x.scale" = x.scale,
#"y.center" = y.center, "y.scale" = y.scale,
"remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
"remove_non_significant" = remove_non_significant, "returnData" = returnData, "verbose" = verbose)
check_class(logical_params, class = "logical")
#### Check rownames
lst_check <- checkXY.rownames(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Check colnames in X for Illegal Chars (affect cox formulas)
X <- checkColnamesIllegalChars(X)
#### REQUIREMENTS
checkX.colnames(X)
checkY.colnames(Y)
lst_check <- checkXY.class(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Original data
X_original <- X
Y_original <- Y
time <- Y[,"time"]
event <- Y[,"event"]
#### ZERO VARIANCE - ALWAYS
if(remove_near_zero_variance || remove_zero_variance){
lst_dnz <- deleteZeroOrNearZeroVariance(X = X,
remove_near_zero_variance = remove_near_zero_variance,
remove_zero_variance = remove_zero_variance,
toKeep.zv = toKeep.zv,
freqCut = FREQ_CUT)
X <- lst_dnz$X
variablesDeleted <- lst_dnz$variablesDeleted
}else{
variablesDeleted <- NULL
}
#### COEF VARIATION
lst_dnzc <- deleteNearZeroCoefficientOfVariation(X = X)
X <- lst_dnzc$X
variablesDeleted_cvar <- lst_dnzc$variablesDeleted
#### SCALING
lst_scale <- XY.scale(X, Y, x.center, x.scale, y.center, y.scale)
Xh <- lst_scale$Xh
Yh <- lst_scale$Yh
xmeans <- lst_scale$xmeans
xsds <- lst_scale$xsds
ymeans <- lst_scale$ymeans
ysds <- lst_scale$ysds
X_norm <- Xh
#### MAX PREDICTORS
if(is.null(max.variables)){
max.variables <- ncol(X)
}
if(EN.alpha!=0){
max.variables <- check.ncomp(X, max.variables)
max.variables <- check.maxPredictors(X, Y, MIN_EPV, max.variables, verbose = verbose)
}else{
max.variables <- ncol(X)
if(getEPV(X, Y)<MIN_EPV){
warning("Full RIGDE penalty is used (EN.alpha=0). EPV and max.variables parameters will not be used. The new maximum value is the number of variables of matrix X.\n")
}else{
warning("Full RIGDE penalty is used (EN.alpha=0). EPV and max.variables parameters will not be used, although it seems the EPV requirement is meet.\n")
}
}
#### REMOVING event in time 0 patients
if(any(Yh[,"time"]==0)){
if(verbose){
message("Some patients get the event at time 0. Those patients will be removed for the analysis.")
}
pat_names <- rownames(Yh)[Yh[,"time"]==0]
Yh <- Yh[!rownames(Yh) %in% pat_names,]
Xh <- Xh[rownames(Xh) %in% rownames(Yh),]
}
#### INITIALISING VARIABLES
best_cox <- NULL
best_lambda <- NULL
selected_variables <- NULL
problem <- FALSE #convergence issues
#A small detail in the Cox model: if death times are tied with censored times, we assume the censored times occurred
#just before the death times in computing the Breslow approximation; if users prefer the usual convention of after,
#they can add a small number to all censoring times to achieve this effect.
for(t in unique(Yh[,"time"])){
set_pat <- Yh[Yh[,"time"]==t,,drop = FALSE]
if(nrow(set_pat)>1 & length(unique(set_pat[,"event"]))>1){
names_censored <- names(which(set_pat[,"event"]==0))
Yh[names_censored,"time"] <- Yh[names_censored,"time"] + 0.0001
}
}
# BEST lambda
# I cannot add the limit for maximum number of variables bc it fails
# cvfit <- cv.glmnet(x = Xh, y = survival::Surv(time = Yh[,"time"], event = Yh[,"event"]),
# family = "cox", type.measure = "C",
# alpha = EN.alpha, dfmax = max.variables,
# standardize = FALSE, nlambda=200)
# I cannot add the limit for maximum number of variables bc it fails
# pmax = max.variables
EN_cox <- tryCatch(
# Specifying expression
# pmax - coefficients to be non-zero
expr = {
glmnet::glmnet(x = Xh, y = survival::Surv(time = Yh[,"time"], event = Yh[,"event"]),
family = "cox", alpha = EN.alpha, standardize = FALSE, nlambda = 300, pmax = max.variables)
},
# warning = function(e){
# if(verbose){
# message("Model probably has a convergence issue...\n")
# message(paste0("glmnet: ", e))
# }
# suppressWarnings(
# # dfmax - variables in the model
# res <- glmnet::glmnet(x = Xh, y = survival::Surv(time = Yh[,"time"], event = Yh[,"event"]),
# family = "cox", alpha = EN.alpha, standardize = FALSE, nlambda = 300, dfmax = max.variables-1)
# )
# list(res = res, problem = TRUE)
# },
error = function(e){
if(verbose){
message("Model probably has a convergence issue...\n")
message(paste0("\nglmnet error: ", e))
}
list(res = NA, problem = TRUE)
}
)
# sometimes error when just 1 variable
# increase until get some results
if(max.variables == 1 & all(EN_cox$beta[,1] %in% c(0,1))){
i = 1
while(all(EN_cox$beta[,i] %in% c(0,1))){
EN_cox <- glmnet::glmnet(x = Xh, y = survival::Surv(time = Yh[,"time"], event = Yh[,"event"]),
family = "cox", alpha = EN.alpha, standardize = FALSE, nlambda = 300, pmax = max.variables+i)
i = i+1
}
message(paste0("WARNING: coxEN could not be computed for a single variable. In this case, a model with ", i, " variables is returned.\n"))
}
#only if problems
if(all(isa(EN_cox, "list"))){
problem = EN_cox$problem
EN_cox = EN_cox$res
}
if(all(class(EN_cox) %in% c("coxnet", "glmnet"))){
best_lambda <- EN_cox$lambda[which.max(EN_cox$dev.ratio)]
if(best_lambda!=Inf){
coef.matrix <- as.matrix(coef(EN_cox, s = best_lambda))
selected_variables <- rownames(coef.matrix)[which(coef.matrix != 0)]
d <- as.data.frame(cbind(Xh[,selected_variables,drop = FALSE], Yh)) #data
best_cox <- tryCatch(
# Specifying expression
expr = {
survival::coxph(formula = survival::Surv(time,event) ~ .,
data = d,
ties = "efron",
singular.ok = TRUE,
robust = TRUE,
nocenter = rep(1, ncol(Xh)),
model = TRUE, x = TRUE)
},
# Specifying error message
error = function(e){
message(paste0("COX: ", e))
# invisible(gc())
return(NA)
}
)
}
if(best_lambda==Inf || all(is.na(best_cox)) || all(is.null(best_cox))){
best_cox = NA
best_lambda = NA
selected_variables = NA
removed_variables <- NULL
removed_variables_cor <- NULL
func_call <- match.call()
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
survival_model <- NULL
message("coxEN or cox could not be estimated. Sometimes, the error happens when using a EN.alpha = 0 (full ridge penalty). Try to use another value.")
return(coxEN_class(list(X = list("data" = if(returnData) Xh else NA,
"x.mean" = xmeans, "x.sd" = xsds),
Y = list("data" = Yh,
"y.mean" = ymeans, "y.sd" = ysds),
survival_model = survival_model,
EN.alpha = EN.alpha,
n.var = max.variables,
#alpha = alpha,
call = func_call,
X_input = if(returnData) X_original else NA,
Y_input = if(returnData) Y_original else NA,
nzv = variablesDeleted,
selected_variables = selected_variables,
removed_variables = removed_variables,
removed_variables_correlation = removed_variables_cor,
opt.lambda = best_lambda,
convergence_issue = problem,
class = pkg.env$coxEN,
time = time)))
}
}else{
best_cox = NA
best_lambda = NA
selected_variables = NA
removed_variables <- NULL
removed_variables_cor <- NULL
func_call <- match.call()
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
survival_model <- NULL
message("coxEN could not be estimated. Sometimes, the error happens when using a EN.alpha = 0 (full ridge penalty). Try to use another value.")
return(coxEN_class(list(X = list("data" = if(returnData) Xh else NA, "x.mean" = xmeans, "x.sd" = xsds),
Y = list("data" = Yh, "y.mean" = ymeans, "y.sd" = ysds),
survival_model = survival_model,
EN.alpha = EN.alpha,
n.var = max.variables,
#alpha = alpha,
call = func_call,
X_input = if(returnData) X_original else NA,
Y_input = if(returnData) Y_original else NA,
nzv = variablesDeleted,
selected_variables = selected_variables,
removed_variables = removed_variables,
removed_variables_correlation = removed_variables_cor,
opt.lambda = best_lambda,
convergence_issue = problem,
class = pkg.env$coxEN,
time = time)))
}
# RETURN a MODEL with ALL significant Variables from complete, deleting one by one
removed_variables <- NULL
removed_variables_cor <- NULL
# REMOVE NA-PVAL VARIABLES
# p_val could be NA for some variables (if NA change to P-VAL=1)
# DO IT ALWAYS, we do not want problems in COX models
if(all(c("time", "event") %in% colnames(d))){
lst_model <- removeNAorINFcoxmodel(model = best_cox, data = d, time.value = NULL, event.value = NULL)
}else{
lst_model <- removeNAorINFcoxmodel(model = best_cox, data = cbind(d, Yh), time.value = NULL, event.value = NULL)
}
best_cox <- lst_model$model
removed_variables_cor <- c(removed_variables_cor, lst_model$removed_variables)
if(all(is.na(best_cox)) || (problem & all(best_cox$linear.predictors==0))){
best_cox = NA
best_lambda = NA
selected_variables = NA
func_call <- match.call()
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
survival_model <- NULL
# invisible(gc())
return(coxEN_class(list(X = list("data" = if(returnData) Xh else NA, "x.mean" = xmeans, "x.sd" = xsds),
Y = list("data" = Yh, "y.mean" = ymeans, "y.sd" = ysds),
survival_model = survival_model,
EN.alpha = EN.alpha,
n.var = max.variables,
#alpha = alpha,
call = func_call,
X_input = if(returnData) X_original else NA,
Y_input = if(returnData) Y_original else NA,
nzv = variablesDeleted,
selected_variables = selected_variables,
removed_variables = removed_variables,
removed_variables_correlation = removed_variables_cor,
opt.lambda = best_lambda,
convergence_issue = problem,
class = pkg.env$coxEN,
time = time)))
}
#RETURN a MODEL with ALL significant Variables from complete, deleting one by one in backward method
if(remove_non_significant){
if(all(c("time", "event") %in% colnames(d))){
lst_rnsc <- removeNonSignificativeCox(cox = best_cox, alpha = alpha, cox_input = d, time.value = NULL, event.value = NULL)
}else{
lst_rnsc <- removeNonSignificativeCox(cox = best_cox, alpha = alpha, cox_input = cbind(d, Yh), time.value = NULL, event.value = NULL)
}
best_cox <- lst_rnsc$cox
removed_variables <- lst_rnsc$removed_variables
selected_variables <- selected_variables[!selected_variables %in% lst_rnsc$removed_variables]
}
if(class(best_cox)[[1]] %in% "coxph.null"){
survival_model <- NULL
}else if(isa(best_cox,"coxph")){
survival_model <- getInfoCoxModel(best_cox)
}else{
survival_model <- NULL
}
func_call <- match.call()
if(!returnData){
survival_model <- removeInfoSurvivalModel(survival_model)
}
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
# invisible(gc())
return(coxEN_class(list(X = list("data" = if(returnData) Xh else NA, "x.mean" = xmeans, "x.sd" = xsds),
Y = list("data" = Yh, "y.mean" = ymeans, "y.sd" = ysds),
survival_model = survival_model,
opt.lambda = best_lambda,
EN.alpha = EN.alpha,
n.var = max.variables,
call = if(returnData) func_call else NA,
X_input = if(returnData) X_original else NA,
Y_input = if(returnData) Y_original else NA,
convergence_issue = problem,
alpha = alpha,
selected_variables_cox = selected_variables,
nsv = removed_variables,
nzv = variablesDeleted,
class = pkg.env$coxEN,
time = time)))
}
#### ### ### ### ###
# CROSS-EVALUATION #
#### ### ### ### ###
#' coxEN Cross-Validation
#' @description This function performs cross-validated CoxEN (coxEN).
#' The function returns the optimal number of EN penalty value based on cross-validation.
#' The performance could be based on multiple metrics as Area Under the Curve (AUC), I. Brier Score or
#' C-Index. Furthermore, the user could establish more than one metric simultaneously.
#'
#' @details
#' The `coxEN Cross-Validation` function provides a robust mechanism to optimize the hyperparameters
#' of the cox elastic net model through cross-validation. By systematically evaluating a range of
#' elastic net mixing parameters (`EN.alpha.list`), this function identifies the optimal balance
#' between lasso and ridge penalties for survival analysis.
#'
#' The cross-validation process is structured across multiple runs (`n_run`) and folds (`k_folds`),
#' ensuring a comprehensive assessment of model performance. Users can prioritize specific evaluation
#' metrics, such as AUC, I. Brier Score, or C-Index, by assigning weights (`w_AIC`, `w_C.Index`, `w_AUC`,
#' `w_I.BRIER`). The function also offers flexibility in the AUC evaluation method (`pred.method`) and
#' the attribute for metric evaluation (`pred.attr`).
#'
#' One of the distinguishing features of this function is its adaptive evaluation process. The
#' function can terminate the cross-validation early if the improvement in AUC does not exceed the
#' `MIN_AUC_INCREASE` threshold or if a predefined AUC (`MIN_AUC`) is achieved. This adaptive approach
#' ensures computational efficiency without compromising the quality of the results.
#'
#' Data preprocessing options are integrated into the function, emphasizing the significance of data
#' quality. Options to remove near-zero and zero variance variables, either globally or at the fold
#' level, are available. The function also supports multicore processing (`PARALLEL` option) to
#' expedite the cross-validation process.
#'
#' Upon execution, the function returns a detailed output, encompassing information about the best
#' model, performance metrics at various granularities (fold, run, component), and if desired, all
#' cross-validated models.
#'
#' @param X Numeric matrix or data.frame. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and
#' event observations.
#' @param EN.alpha.list Numeric vector. Elastic net mixing parameter values to test in cross
#' validation. EN.alpha = 1 is the lasso penalty, and EN.alpha = 0 the ridge penalty
#' (default: seq(0,1,0.1)).
#' @param max.variables Numeric. Maximum number of variables you want to keep in the cox model. If
#' NULL, the number of columns of X matrix is selected. When MIN_EPV is not meet, the value will be
#' change automatically (default: NULL).
#' @param n_run Numeric. Number of runs for cross validation (default: 3).
#' @param k_folds Numeric. Number of folds for cross validation (default: 10).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero variance
#' filtering (default: NULL).
#' @param remove_variance_at_fold_level Logical. If remove_variance_at_fold_level = TRUE, (near) zero
#' variance will be removed at fold level. Not recommended. (default: FALSE).
#' @param remove_non_significant_models Logical. If remove_non_significant_models = TRUE,
#' non-significant models are removed before computing the evaluation. A non-significant model is a
#' model with at least one component/variable with a P-Value higher than the alpha cutoff.
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the threshold
#' (default: 0.05).
#' @param w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).
#' @param w_C.Index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).
#' @param w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).
#' @param w_I.BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (default: 0).
#' @param times Numeric vector. Time points where the AUC will be evaluated. If NULL, a maximum of
#' 'max_time_points' points will be selected equally distributed (default: NULL).
#' @param max_time_points Numeric. Maximum number of time points to use for evaluating the model
#' (default: 15).
#' @param MIN_AUC_INCREASE Numeric. Minimum improvement between different cross validation models to
#' continue evaluating higher values in the multiple tested parameters. If it is not reached for next
#' 'MIN_COMP_TO_CHECK' models and the minimum 'MIN_AUC' value is reached, the evaluation stops
#' (default: 0.01).
#' @param MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the minimum is
#' reached, the evaluation could stop if the improvement does not reach an AUC higher than adding the
#' 'MIN_AUC_INCREASE' value (default: 0.8).
#' @param MIN_COMP_TO_CHECK Numeric. Number of penalties/components to evaluate to check if the AUC
#' improves. If for the next 'MIN_COMP_TO_CHECK' the AUC is not better and the 'MIN_AUC' is meet, the
#' evaluation could stop (default: 3).
#' @param pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
#' "mean" or "median" (default: "mean").
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated
#' simultaneously. If fast_mode = FALSE, for each run, all linear predictors are computed for test
#' observations. Once all have their linear predictors, the evaluation is perform across all the
#' observations together (default: FALSE).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param return_models Logical. Return all models computed in cross validation (default: FALSE).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
#' total cores - 1 will be used. It could lead to higher RAM consumption (default: FALSE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#' @param seed Number. Seed value for performing runs/folds divisions (default: 123).
#'
#' @return Instance of class "Coxmos" and model "cv.coxEN". The class contains the following elements:
#' \code{best_model_info}: A data.frame with the information for the best model.
#' \code{df_results_folds}: A data.frame with fold-level information.
#' \code{df_results_runs}: A data.frame with run-level information.
#' \code{df_results_comps}: A data.frame with component-level information (for cv.coxEN, EN.alpha
#' information).
#'
#' \code{lst_models}: If return_models = TRUE, return a the list of all cross-validated models.
#' \code{pred.method}: AUC evaluation algorithm method for evaluate the model performance.
#'
#' \code{opt.EN.alpha}: Optimal EN.alpha value selected by the best_model.
#' \code{opt.nvar}: Optimal number of variables selected by the best_model.
#'
#' \code{plot_AIC}: AIC plot by each hyper-parameter.
#' \code{plot_C.Index}: C-Index plot by each hyper-parameter.
#' \code{plot_I.BRIER}: Integrative Brier Score plot by each hyper-parameter.
#' \code{plot_AUC}: AUC plot by each hyper-parameter.
#'
#' \code{class}: Cross-Validated model class.
#'
#' \code{lst_train_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for train the models.
#' \code{lst_test_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for test the models.
#'
#' \code{time}: time consumed for running the cross-validated function.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @export
#'
#' @examples
#' data("X_proteomic")
#' data("Y_proteomic")
#' X_proteomic <- X_proteomic[1:30,1:40]
#' Y_proteomic <- Y_proteomic[1:30,]
#' set.seed(123)
#' index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
#' X_train <- X_proteomic[index_train,]
#' Y_train <- Y_proteomic[index_train,]
#' cv.coxEN_model <- cv.coxEN(X_train, Y_train, EN.alpha.list = c(0.1,0.5),
#' x.center = TRUE, x.scale = TRUE)
cv.coxEN <- function(X, Y,
EN.alpha.list = seq(0,1,0.1),
max.variables = NULL,
n_run = 3, k_folds = 10,
x.center = TRUE, x.scale = FALSE,
remove_near_zero_variance = TRUE, remove_zero_variance = TRUE, toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE, remove_non_significant = FALSE, alpha = 0.05,
w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01, MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3,
pred.attr = "mean", pred.method = "cenROC", fast_mode = FALSE,
MIN_EPV = 5, return_models = FALSE, returnData = FALSE,
PARALLEL = FALSE, verbose = FALSE, seed = 123){
t1 <- Sys.time()
FREQ_CUT <- 95/5
y.center = y.scale = FALSE
#### ### ###
# WARNINGS #
#### ### ###
#### Check evaluator installed:
checkLibraryEvaluator(pred.method)
#### Check values classes and ranges
params_with_limits <- list("MIN_AUC_INCREASE" = MIN_AUC_INCREASE, "MIN_AUC" = MIN_AUC, "alpha" = alpha,
"w_AIC" = w_AIC, "w_C.Index" = w_C.Index, "w_AUC" = w_AUC, "w_I.BRIER" = w_I.BRIER)
check_min0_max1_variables(params_with_limits)
numeric_params <- list("EN.alpha.list" = EN.alpha.list,
"n_run" = n_run, "k_folds" = k_folds, "max_time_points" = max_time_points,
"MIN_COMP_TO_CHECK" = MIN_COMP_TO_CHECK, "MIN_EPV" = MIN_EPV, "seed" = seed)
if(!is.null(max.variables)){
numeric_params$max.variables <- max.variables
}
check_class(numeric_params, class = "numeric")
logical_params <- list("x.center" = x.center, "x.scale" = x.scale,
#"y.center" = y.center, "y.scale" = y.scale,
"remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
"remove_variance_at_fold_level" = remove_variance_at_fold_level,
"remove_non_significant_models" = remove_non_significant_models,
"remove_non_significant" = remove_non_significant,
"return_models" = return_models,"returnData" = returnData, "verbose" = verbose, "PARALLEL" = PARALLEL)
check_class(logical_params, class = "logical")
character_params <- list("pred.attr" = pred.attr, "pred.method" = pred.method)
check_class(character_params, class = "character")
#### FIX possible SEQ() problems
EN.alpha.list <- as.character(EN.alpha.list)
EN.alpha.list <- as.numeric(EN.alpha.list)
#### Check cv-folds
lst_checkFR <- checkFoldRuns(Y, n_run, k_folds, fast_mode)
n_run <- lst_checkFR$n_run
fast_mode <- lst_checkFR$fast_mode
#### Check rownames
lst_check <- checkXY.rownames(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Illegal chars in colnames
X <- checkColnamesIllegalChars(X)
#### REQUIREMENTS
checkX.colnames(X)
checkY.colnames(Y)
lst_check <- checkXY.class(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
check.cv.weights(c(w_AIC, w_C.Index, w_I.BRIER, w_AUC))
if(!pred.method %in% pkg.env$AUC_evaluators){
stop_quietly(paste0("pred.method must be one of the following: ", paste0(pkg.env$AUC_evaluators, collapse = ", ")))
}
#### MAX PREDICTORS
if(is.null(max.variables)){
max.variables <- ncol(X)
}
max.variables <- check.ncomp(X, max.variables)
max.variables <- check.maxPredictors(X, Y, MIN_EPV, max.variables, verbose = verbose)
#### REQUIREMENTS
if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
lst_dnz <- deleteZeroOrNearZeroVariance(X = X,
remove_near_zero_variance = remove_near_zero_variance,
remove_zero_variance = remove_zero_variance,
toKeep.zv = toKeep.zv,
freqCut = FREQ_CUT)
X <- lst_dnz$X
variablesDeleted <- lst_dnz$variablesDeleted
}else{
variablesDeleted <- NULL
}
#### COEF VARIATION
if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
lst_dnzc <- deleteNearZeroCoefficientOfVariation(X = X)
X <- lst_dnzc$X
variablesDeleted_cvar <- lst_dnzc$variablesDeleted
}else{
variablesDeleted_cvar <- NULL
}
#### #
# CV #
#### #
#lst_data <- splitData_Iterations_Folds(X, Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST
#
# lst_X_train <- lst_data$lst_X_train
# lst_Y_train <- lst_data$lst_Y_train
# lst_X_test <- lst_data$lst_X_test
# lst_Y_test <- lst_data$lst_Y_test
# k_folds <- lst_data$k_folds
#
# lst_train_indexes <- lst_data$lst_train_index
# lst_test_indexes <- lst_data$lst_test_index
lst_data <- splitData_Iterations_Folds_indexes(Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST
lst_train_indexes <- lst_data$lst_train_index
lst_test_indexes <- lst_data$lst_test_index
#### ### ### ###
# TRAIN MODELS #
#### ### ### ###
total_models <- k_folds * n_run * length(EN.alpha.list)
comp_model_lst <- get_Coxmos_models2.0(method = pkg.env$coxEN,
X_train = X, Y_train = Y,
lst_X_train = lst_train_indexes, lst_Y_train = lst_train_indexes,
max.ncomp = NULL, penalty.list = NULL, EN.alpha.list = EN.alpha.list, max.variables = max.variables, vector = NULL,
n_run = n_run, k_folds = k_folds,
MIN_NVAR = NULL, MAX_NVAR = NULL, MIN_AUC_INCREASE = NULL, EVAL_METHOD = NULL,
n.cut_points = NULL,
x.center = x.center, x.scale = x.scale,
y.center = y.center, y.scale = y.scale,
remove_near_zero_variance = remove_variance_at_fold_level, remove_zero_variance = FALSE, toKeep.zv = NULL,
alpha = alpha, MIN_EPV = MIN_EPV,
remove_non_significant = remove_non_significant, tol = NULL, max.iter = NULL,
returnData = returnData, total_models = total_models,
PARALLEL = PARALLEL, verbose = verbose)
count_problems = 0
count_null = 0
count = 0
for(l in names(comp_model_lst)){
for(r in names(comp_model_lst[[l]])){
for(f in names(comp_model_lst[[l]][[r]])){
if(is.null(comp_model_lst[[l]][[r]][[f]]$convergence_issue)){
count_null = count_null + 1
}else if(comp_model_lst[[l]][[r]][[f]]$convergence_issue){
count_problems = count_problems + 1
}else{
count = count + 1
}
}
}
}
if(count_problems>0){
message(paste0("There are a total of ", count_problems, " out of ", total_models, " models that could present convergence issues.\n"))
}
#### ### ### ### ### ### #
# BEST MODEL FOR CV DATA #
#### ### ### ### ### ### #
df_results_evals <- get_COX_evaluation_AIC_CINDEX(comp_model_lst = comp_model_lst, alpha = alpha,
max.ncomp = EN.alpha.list, penalty.list = NULL, n_run = n_run, k_folds = k_folds,
total_models = total_models, remove_non_significant_models = remove_non_significant_models, verbose = verbose) #deletion at variable level for EN
if(all(is.null(df_results_evals))){
message(paste0("Best model could NOT be obtained. All models computed present problems."))
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
if(return_models){
return(cv.coxEN_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = comp_model_lst, pred.method = pred.method, opt.EN.alpha = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.coxEN, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}else{
return(cv.coxEN_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = NULL, pred.method = pred.method, opt.EN.alpha = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.coxEN, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}
}
#### ### ### ### ### ### #
# EVALUATING BRIER SCORE #
#### ### ### ### ### ### #
df_results_evals_comp <- NULL
df_results_evals_run <- NULL
df_results_evals_fold <- NULL
optimal_comp_index <- NULL
optimal_comp_flag <- FALSE
if(TRUE){ #compute always BRIER SCORE
#calculate time vector if still NULL
if(is.null(times)){
times <- getTimesVector(Y, max_time_points = max_time_points)
}
#As we are measuring just one evaluator and one method - PARALLEL = FALSE
lst_df <- get_COX_evaluation_BRIER(comp_model_lst = comp_model_lst,
fast_mode = fast_mode,
X_test = X, Y_test = Y,
lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
df_results_evals = df_results_evals, times = times,
pred.method = pred.method, pred.attr = pred.attr,
max.ncomp = EN.alpha.list, n_run = n_run, k_folds = k_folds,
MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
w_I.BRIER = w_I.BRIER, method.train = pkg.env$coxEN, PARALLEL = FALSE, verbose = verbose)
df_results_evals_comp <- lst_df$df_results_evals_comp
df_results_evals_run <- lst_df$df_results_evals_run
df_results_evals_fold <- lst_df$df_results_evals_fold
}
#### ### ### ### #
# EVALUATING AUC #
#### ### ### ### #
if(w_AUC!=0){
#total_models <- ifelse(!fast_mode, n_run * length(EN.alpha.list), k_folds * n_run * length(EN.alpha.list))#inside get_COX_evaluation_AUC
#times should be the same for all folds
#calculate time vector if still NULL
if(is.null(times)){
times <- getTimesVector(Y, max_time_points = max_time_points)
}
#As we are measuring just one evaluator and one method - PARALLEL = FALSE
lst_df <- get_COX_evaluation_AUC(comp_model_lst = comp_model_lst,
X_test = X, Y_test = Y,
lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
df_results_evals = df_results_evals, times = times,
fast_mode = fast_mode, pred.method = pred.method, pred.attr = pred.attr,
max.ncomp = EN.alpha.list, n_run = n_run, k_folds = k_folds,
MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
w_AUC = w_AUC, method.train = pkg.env$coxEN, PARALLEL = FALSE, verbose = verbose)
if(is.null(df_results_evals_comp)){
df_results_evals_comp <- lst_df$df_results_evals_comp
}else{
df_results_evals_comp$AUC <- lst_df$df_results_evals_comp$AUC
}
if(is.null(df_results_evals_run)){
df_results_evals_run <- lst_df$df_results_evals_run
}else{
df_results_evals_run$AUC <- lst_df$df_results_evals_run$AUC
}
if(is.null(df_results_evals_fold)){
df_results_evals_fold <- lst_df$df_results_evals_fold
}else{
df_results_evals_fold$AUC <- lst_df$df_results_evals_fold$AUC
}
optimal_comp_index <- lst_df$optimal_comp_index
optimal_comp_flag <- lst_df$optimal_comp_flag
}
#### ### ### #
# BEST MODEL #
#### ### ### #
df_results_evals_comp <- cv.getScoreFromWeight(lst_cox_mean = df_results_evals_comp, w_AIC, w_C.Index, w_I.BRIER, w_AUC,
colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS")
flag_no_models = FALSE
if(optimal_comp_flag){
best_model_info <- df_results_evals_comp[df_results_evals_comp[,"n.comps"]==EN.alpha.list[[optimal_comp_index]],, drop = FALSE][1,]
best_model_info <- as.data.frame(best_model_info)
}else{
if(all(is.nan(df_results_evals_comp[,"score"]))){
#message("No models computed. All of them have problems in convergency. Probably due to a high number of variables.")
best_model_info <- df_results_evals_comp[1,,drop = FALSE]
flag_no_models = TRUE
}else{
best_model_info <- df_results_evals_comp[which(df_results_evals_comp[,"score"] == max(df_results_evals_comp[,"score"], na.rm = TRUE)),, drop = FALSE][1,]
best_model_info <- as.data.frame(best_model_info)
}
}
#### ###
# PLOT #
#### ###
class = pkg.env$coxEN
lst_EVAL_PLOTS <- get_EVAL_PLOTS(fast_mode = fast_mode, best_model_info = best_model_info, w_AUC = w_AUC, w_I.BRIER = w_I.BRIER, max.ncomp = EN.alpha.list, penalty.list = NULL,
df_results_evals_fold = df_results_evals_fold, df_results_evals_run = df_results_evals_run, df_results_evals_comp = df_results_evals_comp,
colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS", x.text = "EN Alpha Penalization",
class = class)
df_results_evals_comp <- lst_EVAL_PLOTS$df_results_evals_comp
ggp_AUC <- lst_EVAL_PLOTS$ggp_AUC
ggp_IBS <- lst_EVAL_PLOTS$ggp_IBS
ggp_C.Index <- lst_EVAL_PLOTS$ggp_C.Index
ggp_AIC <- lst_EVAL_PLOTS$ggp_AIC
#### ### ### ### ### ### #
# CHANGE 1s COLUMN_NAME #
#### ### ### ### ### ### #
colnames(best_model_info)[1] <- "EN.alpha"
colnames(df_results_evals_fold)[1] <- "EN.alpha"
colnames(df_results_evals_run)[1] <- "EN.alpha"
colnames(df_results_evals_comp)[1] <- "EN.alpha"
### ## ###
# RETURN #
### ## ###
if(!flag_no_models){
message(paste0("Best model obtained."))
}
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
# invisible(gc())
if(return_models){
return(cv.coxEN_class(list(best_model_info = best_model_info, df_results_folds = df_results_evals_fold, df_results_runs = df_results_evals_run, df_results_comps = df_results_evals_comp, lst_models = comp_model_lst, pred.method = pred.method, opt.EN.alpha = best_model_info$EN.alpha, opt.nvar = best_model_info$n.var, plot_AIC = ggp_AIC, plot_C.Index = ggp_C.Index, plot_I.BRIER = ggp_IBS, plot_AUC = ggp_AUC, class = pkg.env$cv.coxEN, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}else{
return(cv.coxEN_class(list(best_model_info = best_model_info, df_results_folds = df_results_evals_fold, df_results_runs = df_results_evals_run, df_results_comps = df_results_evals_comp, lst_models = NULL, pred.method = pred.method, opt.EN.alpha = best_model_info$EN.alpha, opt.nvar = best_model_info$n.var, plot_AIC = ggp_AIC, plot_C.Index = ggp_C.Index, plot_I.BRIER = ggp_IBS, plot_AUC = ggp_AUC, class = pkg.env$cv.coxEN, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}
}
### ## ##
# CLASS #
### ## ##
coxEN_class = function(cox_model, ...) {
model = structure(cox_model, class = pkg.env$model_class,
model = pkg.env$coxEN)
return(model)
}
cv.coxEN_class = function(cox_model, ...) {
model = structure(cox_model, class = pkg.env$model_class,
model = pkg.env$cv.coxEN)
return(model)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.